Electron capture ○	Recoil force	Force measurement	Applications	Summary 00	Backup 00000

Prospects of measuring recoil force from neutrino emission using micromechanical resonators

Oleg Titov TDLI, SJTU

Particle Physics on Tabletops

Tsung-Dao Lee Institute November 9, 2024

Electron capture ●	Recoil force	Force measurement	Applications	Summary 00	Backup 00000
Electron ca	nturo				

$$\underbrace{(A,Z) + e^-}_{\text{bound}} \to (A,Z-1) + \nu_e$$

 $\mathsf{EC} \,\, \mathsf{from} \,\, K \,\, \mathsf{shell}$

Typical contributions of atomic shells o decay rate	
• K $\sim 90\%$	
• $L\sim 10\%$	
• $M \sim 1\%$	

Kinematics

- $E_{\nu} \approx Q_{EC} \sim 1 \,\mathrm{MeV}$
- Nuclear recoil $T_N \lesssim 60 \, {\rm eV}$

•
$$|\boldsymbol{p}_N| = |\boldsymbol{p}_\nu| \approx E_\nu$$

Angular distribution

$$\frac{dw(\boldsymbol{n}_{\nu})}{d\Omega} = \frac{w}{4\pi} \left(1 + BP\eta\cos\theta\right)$$

- $\bullet \ B$ is the asymmetry coefficient
- \bullet P is the nuclear polarization
- η incorporates effects of m_{ν}
- $w = \ln 2/T_{1/2}$ is the total decay rate

Force acting on a radioactive sample

$$\boldsymbol{F} = -N \cdot p_{\nu} \int d\boldsymbol{\Omega} \cdot \boldsymbol{n}_{\nu} \cdot \frac{dw(\boldsymbol{n}_{\nu})}{d\boldsymbol{\Omega}}$$

First study of the effect: C. DeAngelis+ PRC 86, 034615 (2012)

More detailed force calculation: A. L. Barabanov & **OT** PRC **99**, 045502 (2019)

ackup	Summa	Application	Force measurement	pture Recoil force	Electron ca
0000	00	00	000000	000	0

Calculation of recoil force

Angular asymmetry (allowed transitions)

$$B = \begin{cases} \frac{J_i}{J_i + 1}, & J_f = J_i + 1\\ -1, & J_f = J_i - 1\\ -\frac{1 + 2\sqrt{J_i(J_i + 1)}\,\xi}{(J_i + 1)(1 + \xi^2)}, & J_f = J_i \neq 0 \end{cases}$$

$$\xi \equiv \frac{g_V M_F}{g_A M_{GT}}$$

Effect of m_{ν} on angular distribution

$$\eta = \frac{c \sum_{x} p_{\nu x}^{2} |\psi_{x}(0)|^{2}}{\sum_{x} p_{\nu x} E_{\nu x} |\psi_{x}(0)|^{2}} \simeq 1 - \frac{1}{2} \left(\frac{m_{\nu} c^{2}}{E_{\nu}}\right)^{2} \le 1, \quad \eta = 1 \text{ for } m_{\nu} = 0$$

Electron capture	Recoil force	Force measurement	Applications	Summary 00	Backup 00000
Calculation	of recoil f	orce			

Nuclear polarization

$$P\simeq \frac{\beta(J_i+1)}{3J_i} \quad \text{for } \beta\equiv \frac{\mu B_0}{k_BT}\ll 1$$

Recoil force *z*-projection ($m_{\nu} = 0$)

$$F_{z} = -\frac{B}{3} \frac{\ln 2 I_{EC}}{T_{1/2}} \frac{E_{\nu}}{c} NP = -\frac{B}{3} \frac{E_{\nu}}{c} I_{EC} P\alpha$$

• I_{EC} is the relative transition probability • α is the source activity

Parametrization	
$F_z = -m \frac{B[T]}{T[K]} \cdot C \cdot f$ $f_n = \frac{\beta_0 I_{EC} \ln 2}{9 T_{1/2}} \cdot \frac{E_\nu}{m_a c} \cdot \frac{\mu}{\mu_N}$ $C = B(J_i + 1)/J_i$	

Electron capture	Recoil force	Force measurement	Applications	Summa 00

Force measurement

Idea (C. DeAngelis+, 2012)

- Attach sample to cantilever
- Force is determined from Hooke's law: z = F/k
- Can measure $F > F_{min} \sim 10^{-12} \text{ N}$ (k = 0.2 N/m)
- High nuclear polarization is required $P \sim 100\% \ (\mu B_0 \sim k_B T)$

 \bullet Source activity required $\alpha \geq 1~{\rm GBq}$

- In practice $B_0 \lesssim 10$ T, $T \sim 1$ K $\Rightarrow P \lesssim 1\%$
- Required sample mass could be larger than cantilever mass

Typical commercial Si single cantilever. (A. Suter, 2004)

$$V = 125 \times 35 \times 4 \,\mu\text{m}^3$$
, $k = 40 \,\text{N/m}$
 $F_{\min} = \frac{\sqrt{2kk_BT}}{Q}$

Backup

arv

Possible improvements:

- Increase recoil force (due to higher *P*)
- Reduce measurement threshold

For lowering the threshold, one can use MRFM

Static measurement

- Constant field B_0
- z = F/k
- $F>F_{\rm min}\sim 10^{-12}~{\rm N}$
- \bullet Polarization $P\sim 100\%$
- \bullet Activity $\alpha \geq 1~\mathrm{GBq}$
- $\bullet~{\rm For}~^{119}{\rm Sb}~m=4\cdot 10^{-7}~{\rm g}$

Resonance

- Constant field B_0 + oscillating field b(t)
- z = FQ/k, $Q \le 10^5$
- $F>F_{\rm min}\sim 10^{-19}~{\rm N}$
- Polarization $P\sim 0.1-1\%$
- Activity $\alpha \sim 1 \ {\rm MBq}$

• For
119
Sb $m=7\cdot 10^{-12}$ g

$$\begin{aligned} k &= Ewt^3/4l^3\\ F_{\rm min} &= \sqrt{2kk_BT}/Q \end{aligned}$$

Electron capture	Recoil force	Force measurement	Applications	Summary OO	Backup 00000
Optimal sou	rce isotopes	;			

Selection criteria

- $J_i \neq 0$
- Decay from ground state
- \bullet Allowed transition to a single state with $I_{EC} \geq 0.98$
- Force parameter

$$f_n = F/m \ge 10^{-13} \text{ N/g}$$

• Force fluctuations are small:

$$\frac{\alpha}{\nu_c} \ge 100$$

• Heating power due to secondary radiation should be small

E	ec	tro	n	ca	pt	ure
0					1	

Applications

Summary

Backup 00000

Pure Gamow-Teller transitions to ground state

$^{A}X_{i} \rightarrow ^{A}X_{f}$	$T_{1/2}$	μ/μ_N	Q_{0EC}, keV	$f_n, N/g$
$J_i^\pi \to J_f^\pi$	$I_{0EC}, \%$	E_0^*, keV	$E_{\nu 0}, keV$	$m_{\min}, { t g}$
163 Er $\rightarrow ^{163}$ Ho	75.0 min	+0.557	1211	$8.0 \cdot 10^{-9}$
$5/2^- \rightarrow 7/2^-$	99.89	0	1164	$1.3\cdot 10^{-12}$
135 La $\rightarrow ^{135}$ Ba	19.5 h	+3.70	1207	$4.1 \cdot 10^{-9}$
$5/2^+ \to 3/2^+$	98.1	0	1175	$3.6 \cdot 10^{-12}$
165 Er $\rightarrow ^{165}$ Ho	10.36 h	+0.643	377	$3.1 \cdot 10^{-10}$
$5/2^- \rightarrow 7/2^-$	100	0	332	$3.2\cdot10^{-11}$
131 Cs $\rightarrow ^{131}$ Xe	9.69 d	+3.543	355	$9.5 \cdot 10^{-11}$
$5/2^+ \rightarrow 3/2^+$	100	0	325	$7.5 \cdot 10^{-11}$
71 Ge $ ightarrow ^{71}$ Ga	11.43 d	+0.547	233	$1.6 \cdot 10^{-11}$
$1/2^- \to 3/2^-$	100	0	223	$6.3 \cdot 10^{-10}$
55 Fe $\rightarrow {}^{55}$ Mn	2.74 y	+2.7	231	$1.2 \cdot 10^{-12}$
$3/2^- \rightarrow 5/2^-$	100	0	225	$8.6\cdot10^{-9}$
179 Ta $\rightarrow ^{179}$ Hf	1.82 y	+2.289	106	$1.4 \cdot 10^{-13}$
$7/2^+ \to 9/2^+$	100	0	71	$7.0\cdot10^{-8}$

Electron capture O	Recoil force	Force measurement	Applications	Summary 00	Backup 00000

Mixed transitions to ground state

$^{A}X_{i} \rightarrow ^{A}X_{f}$	$T_{1/2}$	μ/μ_N	m, g	Ν	lpha,MBq
$J^\pi_i \to J^\pi_f$	$I_{nEC}, \%$	E_n^*, keV	Q_{nEC}, keV	$E_{\nu n}, \text{keV}$	$f_n, N/g$
37 Ar $ ightarrow$ 37 Cl	35.01 d	+1.145	$1.0 \cdot 10^{-10}$	$1.6\cdot 10^{12}$	0.37
$3/2^+ \to 3/2^+$	100	0	814	811	$7.5 \cdot 10^{-11}$
49 V $ ightarrow$ 49 Ti	330 d	4.47	$1.0 \cdot 10^{-9}$	$1.2\cdot 10^{13}$	0.30
$7/2^- \rightarrow 7/2^-$	100	0	602	597	$1.7 \cdot 10^{-11}$
$^7{ m Be}$ $ ightarrow$ $^7{ m Li}^*, {^7{ m Li}}$	53.22 d	-1.399	$1.0 \cdot 10^{-10}$	$8.6\cdot 10^{12}$	1.29
$3/2^- \to 1/2^-$ $3/2^- \to 3/2^-$	$10.44 \\ 89.56$	$\begin{array}{c} 477.6\\0\end{array}$	$\frac{384}{862}$	$384 \\ 862$	$\frac{1.6 \cdot 10^{-11}}{3.0 \cdot 10^{-10}}$
51 Cr $\rightarrow {}^{51}$ V*, 51 V	27.70 d	-0.93	$1.0 \cdot 10^{-9}$	$1.2\cdot 10^{13}$	3.42
$7/2^- \to 5/2^-$ $7/2^- \to 7/2^-$	$9.93 \\ 90.07$	320.1	$432 \\ 752$	$427 \\ 748$	$\begin{array}{c} 3.0 \cdot 10^{-12} \\ 4.7 \cdot 10^{-11} \end{array}$
$^{65}{\rm Zn} \rightarrow {}^{65}{\rm Cu}^*, {}^{65}{\rm Cu}$	243.9 d	+0.769	$1.0 \cdot 10^{-7}$	$9.3 \cdot 10^{14}$	30.50
$\begin{array}{c} 5/2^- \rightarrow 5/2^- \\ 5/2^- \rightarrow 3/2^- \end{array}$	$50.04 \\ 48.54$	$\begin{array}{c} 1115.6\\ 0\end{array}$	236 1352	$228 \\ 1344$	$5.8 \cdot 10^{-13} \\ 3.3 \cdot 10^{-12}$

11/20

Electron capture	Recoil force	Force measurement	Applications •0	Summary 00	Backup 00000		
Possible applications							

$$\boldsymbol{F} = -N \cdot p_{\nu} \int d\Omega \cdot \boldsymbol{n}_{\nu} \cdot \frac{dw(\boldsymbol{n}_{\nu})}{d\Omega}$$

• Neutrino mass:

$$\frac{F(m_{\nu} \neq 0)}{F(m_{\nu} = 0)} \simeq 1 - \left(\frac{m_{\nu}c^2}{Q_{EC}}\right)^2, \quad \delta F \sim 10^{-10}$$

• BSM physics: extra terms in $dw(n_{\nu})/d\Omega$ Example: Lorentz violation

$$\frac{dw_{nEC}}{d\Omega} = \frac{w_{nEC}}{4\pi} \left(1 + B_n P \left(\boldsymbol{n}_{\nu} \boldsymbol{n}_J + \chi_i^{l0} \left[\boldsymbol{n}_{\nu} \times \boldsymbol{n}_J \right]_l \right) \right)$$

Electron capture	Recoil force	Force measurement	Applications ○●	Summary 00	Backup 00000
Possible ap	plications				

$$\boldsymbol{F} = -N \cdot p_{\nu} \int d\boldsymbol{\Omega} \cdot \boldsymbol{n}_{\nu} \cdot \frac{dw(\boldsymbol{n}_{\nu})}{d\boldsymbol{\Omega}}$$

• Relative capture probabilities P_K, P_L, \ldots :

$$P_K E_{\nu K} + P_L E_{\nu L} = E_{\nu} (= p_{\nu} c)$$
$$P_K + P_L = 1$$

• Fermi and Gamow-Teller mixing:

$$\xi \equiv \frac{g_V M_F}{g_A M_{GT}}$$

Electron capture O	Recoil force	Force measurement	Applications	Summary ●○	Backup 00000
Summary					

- There is a recoil force caused by neutrino emission in EC
- Formula for the force is obtained for allowed nuclear transitions
- The force can be measured with micromechanical devices
- Applying methods of magnetic resonance force microscopy increases sensitivity
- Information about weak interactions, atomic and nuclear structure can be probed
- The proposed experiment can complement existing experiments

Electron capture	Recoil force	Force measurement	Applications	Summary	Backup
0	000	000000	00	00	00000

Thank you!

Electron capture O	Recoil force	Force measurement	Applications	Summary 00	Backup ●0000

Backup slides

Electron capture	Recoil force	Force measurement	Applications	Summary 00	Backup 0●000
Electron car					

Main process

$$\underbrace{(A,Z) + e^{-}}_{\text{bound}} \to (A,Z-1) + \nu_{e}$$

Secondary processes

- Atomic de-excitation: X-rays + Auger e^-
- Nuclear de-excitation: γ + internal conversion e^-

Competing processes

- β^+ decay $(A,Z) \rightarrow (A,Z-1) + e^+ + \nu_e$
- Radiative EC $(A, Z) + e^- \rightarrow (A, Z - 1) + \nu_e + \gamma$
- Internal ionization $(A,Z) + e^- \rightarrow (A,Z-1) + \nu_e + e^-$

Electron capture	Recoil force	Force measurement	Applications	Summary 00	Backup 00●00

Calculation of recoil force: details

$$\begin{split} |J_{i}\rangle &= \sum_{M_{i}} a_{M_{i}}(J_{i})|J_{i}M_{i}\rangle, \quad \sum_{M_{i}} |a_{M_{i}}(J_{i})|^{2} = 1\\ dw_{nEC}(\mathbf{n}_{\nu}) &= \sum_{x} dw_{nx}(\mathbf{n}_{\nu}) = \frac{2\pi}{\hbar} \sum_{xM_{f}\sigma_{e}\sigma_{\nu}} \left| \langle nJ_{f}M_{f}|\sum_{j} \hat{h}_{j}(\sigma_{e},\sigma_{\nu})|J_{i}\rangle \right|^{2} \frac{pEd\Omega}{(2\pi\hbar)^{3}c^{2}}\\ \hat{h}_{j}(\sigma_{e},\sigma_{\nu}) &= \frac{G_{F}V_{ud}}{\sqrt{2}} e^{-i\frac{\mathbf{p}\nu_{nx}\mathbf{r}_{j}}{\hbar}} \left(g_{A}\mathbf{j}(\sigma_{e},\sigma_{\nu})\sigma_{j} + ig_{V}j_{4}(\sigma_{e},\sigma_{\nu})\right)\hat{\tau}_{j-}\\ \langle a_{M_{i}}(J_{i})a_{M_{i}'}^{*}(J_{i})\rangle &= \langle |a_{M_{i}}(J_{i})|^{2}\rangle \,\delta_{M_{i}M_{i}'}, \quad P = \frac{\langle M_{i}\rangle}{J_{i}}, \quad \langle M_{i}\rangle = \sum_{M_{i}} M_{i}\langle |a_{M_{i}}(J_{i})|^{2}\rangle\\ j_{\lambda}(\sigma_{e},\sigma_{\nu}) &= iu_{\nu}^{\dagger}(\sigma_{\nu})\gamma_{4}\gamma_{\lambda}(1+\gamma_{5})u_{e}(\sigma_{e})\psi_{x}(0)\\ u_{e}(\sigma_{e}) &= \left(\begin{array}{c} \varphi_{e}(\sigma_{e})\\ 0 \end{array} \right), \quad u_{\nu}(\sigma_{\nu}) = \sqrt{\frac{E+m_{\nu}c^{2}}{2E}} \left(\begin{array}{c} \varphi_{\nu}(\sigma_{\nu})\\ \frac{c\,\sigma\mathbf{p}}{E+m_{\nu}c^{2}}\varphi_{\nu}(\sigma_{\nu}) \end{array} \right) \end{split}$$

 $\langle nJ_f M_f | \sum_j \sigma_{jq} \hat{\tau}_{j-} | J_i M_i \rangle = \sqrt{\frac{2J_i + 1}{2J_f + 1}} C_{J_i M_i 1q}^{J_f M_f} M_{GT}$ $\langle nJ_f M_f | \sum_j \hat{\tau}_{j-} | J_i M_i \rangle = \delta_{J_f J_i} \delta_{M_f M_i} M_F$

NAL SHALL SHALL	r	· •			
0	000	000000	00	00	00000
Electron conture	Recoil force	Force measurement	Applications	Summary	Backup

 $F_z = M_z \nabla B(z)$

Cyclic adiabatic inversion

