Spin Polarized Quasi-particle in Off-equilibrium Medium

Shu Lin Sun Yat-Sen University

INPAC/TDLI seminar, Shanghai Jiao Tong University, Oct 25, 2024

based on: 2306.14811, 2302.12450, 2410.XXXXX

Spintronics in condensed matter physics

Spin in particle physics

Proton spin puzzle (1988-now)

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g
$$

Spin in high energy nuclear physics

- Spin not conserved, spin angular momentum exchange with orbital angular momentum
- Spin coupling to external field such as magnetic, vorticity etc

Offer a unique probe of spin property of QGP

global spin polarization in heavy ion collisions

$$
L_{ini} \sim 10^5 \hbar \rightarrow S_{final}
$$

Liang, Wang, PRL 2005, PLB 2005

STAR collaboration, Nature $e^{-\beta(H_0-S\cdot\boldsymbol{\omega})}$ 2017

Splitting in global spin polarization

$$
e^{-\beta(H_0-\mathbf{S}\cdot\boldsymbol{\omega}-q\,\mathbf{S}\cdot\mathbf{B})}
$$

Existence of splitting inconclusive yet

STAR collaboration, PRC 2023

local spin polarization in heavy ion collisions

STAR collaboration, PRL 2019

Fu, Liu, Pang, Song, Yin, PRL 2021 Becattini, et al, PRL 2021 Yi, Pu, Yang, PRC 2021

 $\mathcal{P}^i \sim \omega^i \quad \mathcal{P}^i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$ vorticity + shear

Spin polarization in heavy ion collisions

How can radiative correction affect spin coupling to different sources?

Outline

- * Spin coupling to hydrodynamic gradient/EM fields
- Spin polarization in EM fields from chiral kinetic theory
- Radiative corrections to spin polarization in EM fields
- Spin polarization in hydrodynamic state/metric perturbation from chiral kinetic theory
- (In)equivalence of off-equilibrium/metric perturbation
- Radiative corrections to spin polarization in hydrodynamic state
- Conclusion and outlook

Spin polarization from correlation functions

Wigner function

$$
S_{\alpha\beta}^{<}(X=\frac{x+y}{2},P)=\int d^{4}(x-y)e^{iP\cdot(x-y)/\hbar}\left(-\langle\bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle\right)
$$

 \triangleright Spin polarization in EM fields

 $\langle S^<(X,P)\rangle_{\text{eq},A_\mu}$

 \triangleright Spin polarization in hydrodynamic state

$$
\langle S^<(X,P)\rangle_{\text{off-eq}}=\langle S^<(X,P)\rangle_{\text{eq},h_{\mu\nu}}
$$

 A_{μ} , $h_{\mu\nu}$ slow-varying $\partial_{X}\ll P$

Spin polarization in EM fields

Chiral kinetic theory description

consider massless quark

$$
\label{eq:3.1} \left\langle \begin{array}{cc} \gamma_\mu \left(P^\mu + \frac{i}{2} \partial_X^\mu - \frac{i}{2} F^{\mu\nu} \partial_\nu^p \right) S^< = 0 \end{array} \right.
$$

Hidaka, Pu, Wang, Yang, PPNP 2022

$$
S^{\leq} = \frac{1}{4} \left[\left(1 + \gamma^5 \right) \gamma^{\mu} R_{\mu} + \left(1 - \gamma^5 \right) \gamma^{\mu} L_{\mu} \right]
$$

 $\delta R^0 = 2\pi \mathbf{p} \cdot \mathbf{B} \delta'(P^2) f(p_0)$ $\delta R^i = 2\pi \left[\epsilon^{ijk} E_j p_k + p_0 B_i\right] \delta'(P^2) f(p_0)$

Hidaka, Pu, Yang 2016

$$
L_\mu=-R_\mu
$$

Spin polarization from difference between R & L

Equivalent diagrammatic description: EM fields

Standard KMS relation

In-medium electromagnetic form factors (FF)

$$
\Gamma^{\mu} = F_0 u^{\mu} + F_1 \hat{p}^{\mu} + F_2 \frac{i \epsilon^{\mu \nu \rho \sigma} u_{\nu} P_{\rho} Q_{\sigma}}{2(P \cdot u)^2}
$$

 u^{μ} medium frame vector

$$
S^{<0} = 2\pi F_2 p B_{\parallel} \delta'(P^2) f(p_0)
$$

\n
$$
S^{
\nspin Hall spin-perpendicular spin-parallel
\neffective
\nmagnetic coupling magnetic coupling
$$

In vacuum $F_0 = F_1 = F_2 = 1$

In medium: lift of degeneracy expected

SL, Tian, 2023

 P_2

 $\, {\bf B}$

 B_{\perp}

a

 P_1

 \it{Q}

Radiative correction to in-medium electromagnetic FF

spin Hall effect

spin-perpendicular magnetic coupling

spin-parallel magnetic coupling

SL, Tian, 2023

 $X(p,T)$

degeneracy partially lifted in in-medium FF

Spin polarization in hydrodynamic state

$$
\langle S^{<}(X, P) \rangle_{\text{off-eq}} = \langle S^{<}(X, P) \rangle_{\text{eq}, h_{\mu\nu}} \qquad \qquad \underbrace{g}_{\text{max}}
$$

CKT in
flat space \tcurved space

CKT in flat space: off-equilibrium state

$$
\frac{i}{2}\partial S^{\lt}\ + \not\!{P}S^{\lt} = 0
$$

$$
S^< = \frac{1}{4}\big[\left(1+\gamma^5\right)\gamma^{\mu}R_{\mu} + \left(1-\gamma^5\right)\gamma^{\mu}L_{\mu}\big]
$$

Hidaka, Pu, Yang 2016, 2017

$$
R^{\mu} = -2\pi \frac{\delta(P^2)}{P^{\mu}f_n} + \frac{\epsilon^{\mu\nu\rho\sigma}P_{\rho}n_{\sigma}}{2P \cdot n} \partial_{\nu}f_n
$$

 n^{μ} arbitrary frame vector $\rightarrow u^{\mu}$

modified KMS relation (for free theory dispersion + local equilibrium axial component) $f(p_0) \rightarrow f(p_0 - \frac{1}{2}\hat{p} \cdot \omega)$ modified distribution degenerate couplings to $S^i \sim \left(\beta \omega^i + \epsilon^{ijk} \hat{p}_l \hat{p}_k \beta \sigma_{jl} + \partial_i \beta \right)$ vorticity, shear, T-grad

CKT in curved space: equilibrium state

$$
\gamma^{\mu} = e_a^{\mu} \gamma^a \qquad \bar{\psi} = \psi^{\dagger} \gamma^{\hat{0}} \qquad \mu \text{ curved index}
$$
 Gao, Huang,
\n
$$
S^{\leq} = \frac{1}{4} \left[(1 + \gamma^5) \gamma^a R_a + (1 - \gamma^5) \gamma^a L_a \right]
$$
 Clifford algebra in flat basis
\n
$$
R^a = -2\pi \delta(P^2) \left(P^a f_n + \frac{\epsilon^{abcd} n_d}{2P \cdot n} e_b^{\mu} D_{\mu} (P_c f_n) \right) \qquad f_n \text{ : equilibrium distribution}
$$

\n
$$
D_{\mu} = \partial \phi^{\prime} + \Gamma^{\lambda}_{\mu\nu} \frac{\partial}{\partial P_{\nu}} P_{\lambda} \qquad h_{0i} = -v^i \quad h_{00} = -2 \frac{\delta T}{T}
$$

Christoffel term can realize vorticity and T-grad, but not shear!

 $\langle S^<(X,P) \rangle_{\text{off-eq}} = \langle S^<(X,P) \rangle_{\text{eq},h_{\mu\nu}}$ Inequivalence?

Diagrammatic description of metric perturbation

Effect I: scattering of
\nfermion
\n
$$
S^{<}(X, P) = \int d^{4}y \sqrt{-g(X)} e^{-iP \cdot y} \langle \bar{\psi}_{\beta}(X + \frac{y}{2}) \psi_{\alpha}(X - \frac{y}{2}) \rangle
$$
\n
$$
\bar{\psi}(X + \frac{y}{2}) = \bar{\psi}(X) \exp(\frac{y}{2} \cdot \overleftarrow{D}) \quad \psi(X - \frac{y}{2}) = \exp(-\frac{y}{2} \cdot D) \psi(X)
$$
\n
$$
D_{\mu} = \partial_{\mu}^{X} + \frac{1}{4} \omega_{\mu, ab} \gamma^{ab} - \Gamma^{\lambda}_{\mu\nu} y^{\nu} \partial_{\lambda}^{y}
$$
\nEffect II: rotation of
\nspinor by spin
\nconnection

Summary of three approaches

Equilibrium + metric perturbation: I. CKT; II. diagrams

III. Off-equilibrium CKT

 \geq II = I + spin-vorticity coupling Neither I nor II reproduces III

Need to work with off-equilibrium state

Off-equilibrium state from metric perturbation

static metric perturbation $h_{0i} = -v^i$ $h_{00} = -2\frac{\delta T}{T}$

equilibrium state in curved space $f(\frac{p_\mu u^\mu}{T})$ $u^\mu = (g_{00}^{-1/2}, 0, 0, 0)$

$$
f\left(\frac{\overset{\rightharpoonup}{p_a}u^a}{T}\right) \qquad u^a = u^\mu e^a_\mu
$$

choice of vielbein (local reference frame)

$$
e_0^{\hat{0}} = 1 + \frac{h_{00}}{2}, \quad e_i^{\hat{j}} = -\delta_{ij}, \quad e_0^{\hat{i}} = -h_{0i}.
$$

off-equilibrium state in flat space $u^{\hat{0}} = 1, \quad u^{\hat{i}} = -h_{0i}.$

SL, Tian, to appear

Types of radiative corrections

 \triangleright spectral function distribution function \triangleright KMS relation

At tree level, spin polarization from modified KMS + modified distribution

At loop level, radiative correction occurs in all three types

Focus on radiative correction to spectral function

How to include self-energy corrections?

correction to spectral function, usually ignored in kinetic theory

collision term in steady state

$$
\delta f \sim O\left(\frac{\partial}{g^4}\right)
$$

$$
g^4 \times \delta f \sim O(\partial)
$$

diagramatic resummation Gagnon, Jeon, 2006

consider correction to spectral function w/ off-equilibrium effect

collisional contribution to spin-shear coupling: SL, Wang, 2022, 2024

Spectral function representation

$$
\rho_{\alpha\beta}(P) = \int d^4x e^{iP\cdot x} \langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0) + \bar{\psi}_{\beta}(0)\psi_{\alpha}(x)\rangle
$$

$$
S_{ra,\alpha\beta} = \int d^4x e^{iP\cdot x} \theta(x_0) \langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0) + \bar{\psi}_{\beta}(0)\psi_{\alpha}(x)\rangle
$$

$$
\rho(P) = 2\text{Re}[S_{ra}(P)] = 2\text{Im}[S_R]
$$

valid for off-equilibrium state invariant under time-reversal

SL, Tian, to appear

Gradient corrections to retarded function

$$
\frac{i}{2}\hat{\phi}S_R(X,P) + \hat{P}S_R(X,P) - \left(\Sigma_R(X,P)S_R(X,P) + \frac{i}{2}\{\Sigma_R(X,P), S_R(X,P)\}_{\text{PB}}\right) = -1
$$
\n
$$
S_R = S_R^{(0)} + S_R^{(1)} + \cdots,
$$
\n
$$
\{A, B\}_{\text{PB}} = \partial_P A \cdot \partial_X B - \partial_X A \cdot \partial_P B
$$
\n
$$
S_R^{(0)} = -\frac{1}{\overline{P}} - \frac{1}{\overline{P}}\frac{\Sigma_R}{\overline{P}}\frac{1}{\overline{P}}
$$
\n
$$
S_R^{(1)} = -\frac{1}{\overline{P}}\delta\Sigma_R\frac{1}{\overline{P}} + \gamma^5\gamma^\beta P^\nu T^{\mu\lambda}\epsilon_{\beta\lambda\mu\nu}\frac{-1}{(P^2)^2}
$$
\n
$$
T_{\mu\lambda} = \partial_{\mu} \Sigma_A^R
$$

involves both **equilibrium/off-equilibrium self-energy** SL, Tian, to appear

Equilibrium self-energy

$$
\longrightarrow \quad p_0 \; = \; p(1 + 8A)
$$

$$
A = \frac{1}{2(2\pi)^2} \frac{-i\pi}{2p\beta}.
$$

modified dispersion: finite damping

$$
p_0 \to p \cdot u(X), \ \beta \to \beta(X)
$$

No correction to spectral function

$$
P\gg T\quad, P^2\ll p/\beta,
$$

Energetic particle close to mass shell

SL, Tian, to appear

Off-equilibrium self-energy

off-equilibrium propagators for quark/gluon from CKT

Hidaka, Pu, Yang 2017

 ω

 \sim

Huang, Mitkin, Sadofyev, Speranza 2020

Hattori, Hidaka, Yamamoto, Yang 2020

 $\mathcal{A}^0 = i\omega^i p_i \beta(-4\delta A - 2\delta B),$

 $\frac{\delta \Sigma_{ar}}{g^2 C_F} = \gamma^5 \gamma^\mu {\cal A}_\mu,$

$$
P \gg T \quad P^2 \ll p/\beta,
$$

Energetic particle close to mass shell

$$
\mathcal{A}^{k} = i\omega_{\parallel}^{k}\beta p(-4\delta A - 2\delta B) + \omega_{\perp}^{k}\beta p(-4\delta A - \delta B) + \epsilon^{ijk}\hat{p}_{i}\hat{p}_{l}\sigma_{jl}\beta p(-\delta B) + \epsilon^{ijk}p_{i}\partial_{j}\beta(-\delta C) \prod_{i=1}^{n} p
$$
\n
$$
\delta C = \frac{1}{4(2\pi)^{2}} \left(\frac{-4C_{a} + 2C_{b} + i\pi C_{a} - 2C_{a}\ln\frac{p\beta(-1+a)}{2}}{2p\beta} \right) \qquad a = p_{0}/p + i\eta.
$$

similar expressions for δA δB

 ω_{\perp}

tree level vs loop correction

$$
\begin{split}\n\text{loop} \qquad & \int dp_0 \delta S^< (P) = \int dp_0 \delta \rho(P) f(p_0) \\
& = \frac{g^2}{2(2\pi)^2} \frac{\pi}{2p} \gamma^5 \gamma_i \left[\omega_{\parallel}^i (2C_b + (-2 + \ln 4)C_a) + \frac{2C_b + (2 + \ln 4)C_a}{2} \omega_{\perp}^i + \frac{2C_b + (-6 + \ln 4)C_a}{2} \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl} + \frac{2C_b + (-4 + \ln 4)C_a}{2} \epsilon^{ijk} \hat{p}_j \frac{\partial_k \beta}{\beta} \right] f(p) \\
& C_a = 0.5 \qquad C_b \simeq 0.630,\n\end{split}
$$

$$
\text{tree} \qquad \int dp_0 S^<_{(0)}(P) = -\gamma^5 \gamma_i \frac{2\pi}{2} \left(\omega^i + \epsilon^{ijk} \hat{p}_k \frac{\partial_j \beta}{\beta} + \epsilon^{ijk} \hat{p}_k \hat{p}_l \sigma_{lj} \right) f'(p)
$$

degeneracy in couplings to vorticity, shear, T-grad lifted

SL, Tian, to appear

Conclusion

- Spin polarization in off-equilibrium state can't be fully mimicked by metric perturbation on equilibrium state
- Equilbrium state in curved space describes off-equilbrium state in flat space with suitable choice of local rest frame
- Sources of polarization: modified spectral; modified distribution; modified KMS
- Radiative correction to spectral function lifts degeneracy of spin coupling to vorticity, shear and T-grad

Outlook

- Radiative correction to distribution function a la gravitational FFs
- Radiative correction to modified KMS

Thank you!

Equilibration of hydro DOF

$$
G_{\pi_i \pi_j}^R = \left(\delta_{ij} - \hat{k}_i \hat{k}_j\right) \frac{\eta k^2}{i\omega - \gamma_\eta k^2} + \hat{k}_i \hat{k}_j \frac{(\epsilon + p)(k^2 c_s^2 - i\omega \gamma_s k^2)}{\omega^2 - k^2 c_s^2 + i\omega \gamma_s k^2}
$$

\n
$$
G_{\epsilon\epsilon}^R = \frac{(\epsilon + p)k^2}{\omega^2 - k^2 c_s^2 + i\omega \gamma_s k^2}
$$

\n
$$
\omega \to 0 \qquad G_{\pi_i \pi_j}^R \to -\delta_{ij}(\epsilon + p) \qquad G_{\epsilon\epsilon}^R \to -\frac{\epsilon + p}{c_s^2}
$$

\n
$$
\delta \pi_i = h_{0j} G_{\pi_i \pi_j}^R = -(\epsilon + p) \delta_{ij} h_{0j} \qquad \delta \epsilon = \frac{1}{2} h_{00} G_{\epsilon\epsilon}^R = -\frac{(\epsilon + p)}{2c_s^2} h_{00}
$$

\n
$$
h_{0i} = -v^i \qquad h_{00} = -2\frac{\delta T}{T}
$$

Equilibration of hydro DOF in static metric perturbation