

From CUORE to CUPID

CUORE

- closely packed array of TeO_2 crystals 750 g each working as cryogenic calorimeters @ 10 mK
- total mass of TeO $_2$: 742 kg (~206 kg of $^{\rm 130}{\rm Te}$)
- main goal: assess the Majorana nature of neutrinos by searching for $0\nu\beta\beta$ in ^{130}Te

In operation since 2016 @ LNGS (L'Aquila Italy)

CUORE - Background Model

Accurate Geant4-based background model

- Detailed geometry
- Simulation of ~80 different sources
- Takes advantage of the high granularity of the detector
- Bayesian simultaneous fit of M1 and M2 spectra with a linear combination of the background sources
- Priors given by radioassays and previous experiments

CUORE - Background Model

particle-based background composition suggests the path toward a new generation Onbb experiment with bolometers:

- muon-veto
- alpha rejection

residual bkg is:

- ~ 3 10⁻³ ckky in ¹³⁰Te ROI
- $\sim 2 \ 10^{-4} \text{ ckky in } ^{100}\text{Mo ROI}$

CUPID

CUPID - project

replace CUORE **TeO**₂ detector with an array of **Li**₂¹⁰⁰**MoO**₄ ^a scintillating bolometers

• ¹⁰⁰Mo ($Q_{\beta\beta}$ = 3034 keV) \rightarrow lower BI & better phase space compared to ¹³⁰Te

new detector array

- 1596 Li₂MoO₄ scintillating crystals (280 g each)
- 1700 light detectors \rightarrow scintillation signal read-out
- Mo enriched > 95% in ¹⁰⁰Mo

additional needs

- upgrade the cryostat for a 1600 double read-out array
- improve external n-shield & add a μ -veto

CUPID sensitivity vs other experiments

PID

CUPID - activities: crystals

Requirements:

- Enrichment ~ 95%
- Radiopurity < 0.4 nBq/kg U & Th
- Performances
 - Heat energy FWHM ~ 5 keV @ 3 MeV
 - Light Yield > 0.36 keV/MeV

Critical points

- Carefully controlled production chain able to ensure reproducibility in radiopurity & optical performances
- Reduce to a minimum isotope loss during crystal production: recycling and re-use of leftover material from various stages of crystal production chain

Baseline:

- ¹⁰⁰Mo isotope producer = IPCE (Tianjin China)
- Li₂¹⁰⁰MoO₄ crystal producer (SICCAS Shanghai China)

CUPID - activities: crystals

Pre-production: joint INFN+IN2P3 activity

- 4 kg ¹⁰⁰Mo produced by IPCE during 2024
- ICP-MS screening to certify U/Th and K (same samples measured in China, Italy, USA)
- work in progress to define the crystal growth procedure and material recovery efficiency

Powder Radioactivity Requirements

Expected results are:

- protocol for mass production: crystal growth, cutting and final treatment. Certified reproducibility of crystal quality (radiopurity and performances) & production yield.
- certified ¹⁰⁰Mo recycling efficiency and certified reproducibility in crystal production.
- timeline and price for the crystal production for CUPID experiment (~1600 LMO crystals).

Element	Requirement
232 Th	< 0.8 mBq/kg
238 U	< 2.5 mBq/kg
^{40}K	< 50 mBq/kg

CUPID - activities: crystals

Bulk Radioactivity Requirements

Note:

- requirements on ²²⁶Ra and ²²⁸Th that are the two isotopes in the U and Th chains always in secular equilibrium with ²¹⁴Bi and ²⁰⁸Tl (extremely dangerous background source for CUPID)
- the concentration of these isotopes by ICP-MS, also in precursors, is unknown (ICP-MS can't be used) we rely on U and Th concentrations but we know that often secular equilibrium is broken
- assuming secular equilibrium, we aim at an impurity reduction from crystallization > 1000 on U/Ra and Th
- Bolometric tests at LNGS for each production batch to verity that crystals meet requirements

CUPID - activities: light detectors

scintillation light collected with a Ge wafer + NTD thermistor

- collected light ~ 0.3 keV/MeV
- 99.7% rejection α particles

Neganov-Truminof-Luke amplification used to **improve S/N and reject** $2\nu\beta\beta$ pile-up ¹⁰⁰Mo $2\nu\beta\beta \sim 2.6$ mHz

CUPID - activities: light detectors

CUPID - activities: gravity assisted assembly

step 0: design. Crystals stacked and hold in place by their own weight. Fast assembly and improved radiopurity. **step 1: conceptual validation.** Test of mechanical and thermal properties

step 2: full-scale prototype. Construction in progress, test during 2025.

CUPID - background

Background Budget (our goal) BI = **1 10**⁻⁴ c/(keV kg y)

Background Projections (our status) BI = **1.2 10**⁻⁴ c/(keV kg y)

68% interval = $(0.61, 1.48) \cdot 10^{-4}$ ckky $\varepsilon_{\text{Signal}} = 86\% \varepsilon_{\text{Pileup}} = 90\%$

CUPID - timeline and staged deployment

We opted for a staged deployment:

- CUPID-I = 1/3 of the crystals & 3 year data-taking
 - early data (small gap between CUORE shut down and first CUPID data), sensitivity in time to be competitive with Legend-200
 - risk mitigation (early identification of issues)
- CUPID-II \rightarrow full array= add the remaining 2/3 of the crystals & full data-taking
 - Enrichment and crystal growth will proceed in parallel with stage I datataking

Timeline: from CUORE to CUPID

	24	25	26	27	28	29	30	31	32	33	34	> 2035
Crystal production preparation												
Enriched crystals production - Stage I			-									
Enriched crystals production - Stage II						•		4				
Tower construction - Stage I					L +							
End of CUORE science run												
Cryogenic system upgrade			-									
CUORE low energy run			-									
Deployment - Stage I						L∌L⇒-						
Data taking - Stage I							►					
Tower construction - Stage II									L.			
Deployment - Stage II											↓ → − −	
Data taking												└ ▶

CUPID sensitivity vs other experiments

PID

CUPID - Summary & Outlook

2024 milestones

- first 4 kg of isotope produced, enriched crystal pre-production started
- optimization of light detector technology in progress goal is to achieve $2\nu\beta\beta$ pile-up rejection corespongin to a ROI BI < 5 10⁻⁴ counts/(keV kg y)
- VSTT tower under construction

2025 goals

- **complet**e enriched crystal pre-production meeting all the requirements (final test of all the crystals @ LNGS
- operate VSTT full validation of all the systems (assembly, assembly line, electronics ...)
- INFN review (to be scheduled likely in June) to discuss achievements and next steps

CUPID - Summary & Outlook

CUPID-China contribution in the next years will be essential for the success of CUPID project

