

Topological phase transition in Fe(Te, Se)

A topological phase transition can be induced by controlling topological bands through changes in chemical composition, application of strain, external fields, and so on. In the iron-based superconductor Fe(Te,Se), a topological phase transition is expected by changing Te/Se compositions, and it is considered a promising route to manipulating the topologically superconducting states and Majorana zero modes. However, such a topological phase transition has never been resolved. Here, we investigate the electronic structures of $\text{FeTe}_x\text{Se}_{1-x}$ single crystals of a wide Te/Se composition range across the topological phase transition, using high-resolution angle-resolved photoemission spectroscopy. With the data from $\text{FeTe}_{0.55}\text{Se}_{0.45}$, we provide the first direct demonstration of the band inversion along the k_z axis. We further find that the topological phase transition occurs at $\text{FeTe}_{0.45}\text{Se}_{0.55}$ via the thorough examination of different Te/Se composition samples. Most importantly, our high resolution measurements reveal that a special Te/Se composition exists, at which the Dirac point is located exactly at the Fermi level, which is essential for realizing clean and isolated Majorana zero modes in the vortex cores.

Primary author: HUANG, Yong (Nanjing University)

Presenter: HUANG, Yong (Nanjing University)