

Symmetry-driven anisotropic coupling effect in antiferromagnetic topological insulator: Mechanism for a quantum anomalous Hall state with a high Chern number

Antiferromagnetic (AFM) topological insulators (TIs), which host magnetically gapped Dirac-cone surface states and exhibit many exotic physical phenomena, have attracted great attention. Here, we find that the coupled surface states can be intertwined to give birth to a set of $2n$ unique new Dirac cones, dubbed intertwined Dirac cones, through the anisotropic coupling enforced by crystalline n -fold ($n = 2, 3, 4, 6$) rotation symmetry C_{nz} in the presence of a PT -symmetry breaking potential, for example, an electric field. Interestingly, we also find that the warping effect further drives the intertwined Dirac-cone state into a quantum anomalous Hall phase with a high Chern number ($C = n$). Then, based on first-principles calculations, we have explicitly demonstrated six intertwined Dirac cones and a Chern insulating phase with a high Chern number ($C = 3$) in $\text{MnBi}_2\text{Te}_4/(\text{Bi}_2\text{Te}_3)_m/\text{MnBi}_2\text{Te}_4$ heterostructures, as well as the $C = 2$ and $C = 4$ phases in HgS and $\alpha\text{-Ag}_2\text{Te}$ films, respectively. This work discovers the intertwined Dirac-cone state in AFM TI thin films, which reveals a mechanism for designing the quantum anomalous Hall state with a high Chern number and also paves a way for studying highly tunable high-Chern-number flat bands of twistronics.

Primary author: 范, 怡良 (南京大学)

Co-authors: Mr 王, 怀强 (南京大学); Mr 汤, 沛哲 (北京航空航天大学); Mr MURAKAMI, Shuichi (东京工业大学); Mr 万, 贤纲 (南京大学); Mr 张, 海军 (南京大学); Mr 邢, 定钰 (南京大学)

Presenter: 范, 怡良 (南京大学)