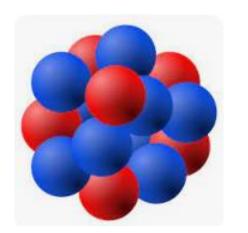
# Ab initio nuclear physics on the lattice

# Bing-Nan Lu

**Graduate School of China Academy of Engineering Physics** 

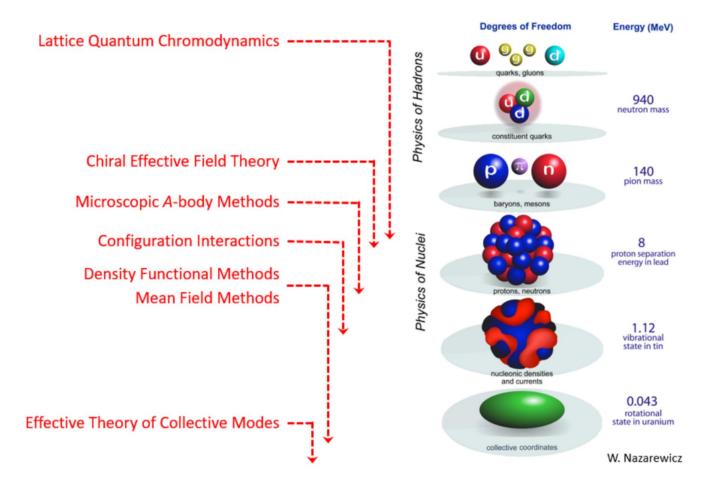


ShangHai JiaoTong University 2024-DEC-11, ShangHai

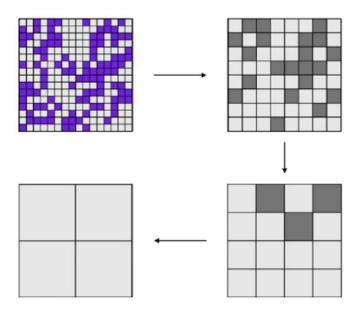
### Contents

- Brief introduction to nuclear lattice EFT
- Nuclear force problem with NLEFT
- Strong correlation I: nuclear clustering
- Strong correlation II: nuclear thermodynamics
- Summary and perspective

## What is a nuclear EFT?



- Modern nuclear force constructions are based on the Effective Field Theory
- Theoretical foundation of EFT is the Wilsonian renormalization group:
  - High-momentum details can be integrated out & hidden in LECs
  - Low-momentum physics kept invariant under ren. group transformations

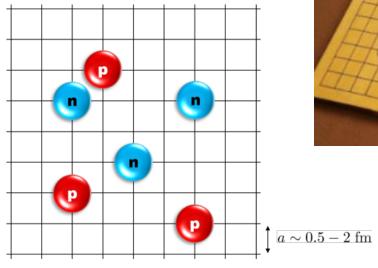


# Lattice EFT: A many-body EFT solver

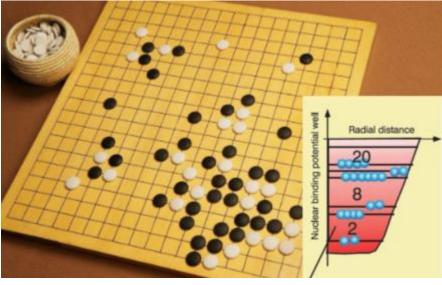
#### **Lattice EFT** = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing  $a \approx 1$  fm = 620 MeV ( $\sim$ chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range,  $\delta$ -like and long-range, pion-exchange interactions
- Exact method, polynomial scaling ( $\sim A^2$ )



Lattice adapted for nucleus



 Solve the non-perturbative nuclear many-body problem by sampling all configurations

# Lattice EFT: A many-body EFT solver

 Get interacting g. s. from imaginary time projection:

$$|\Psi_{g.s.}
angle \propto \lim_{ au 
ightarrow \infty} \exp(- au H) |\Psi_A
angle$$

with  $|\Psi_A\rangle$  representing *A free* nucleons.

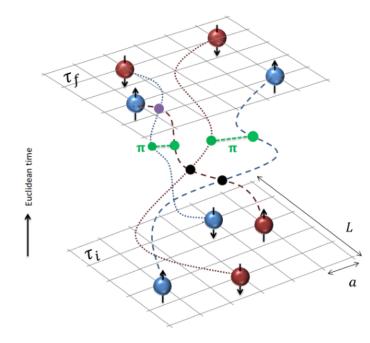
Expectation value of any operator \( \mathcal{O} \):

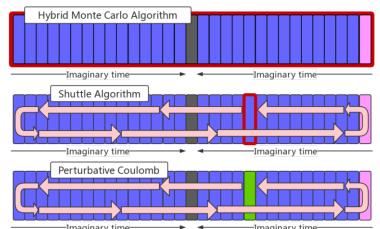
$$\langle O 
angle = \lim_{ au o \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A 
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A 
angle}$$

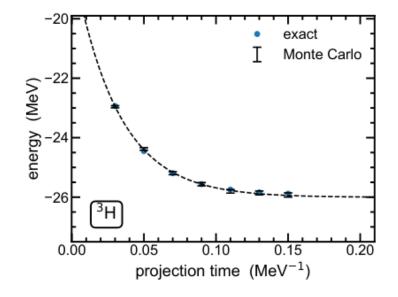
τ is discretized into time slices:

$$\exp(- au H) \simeq \left[ : \exp(-rac{ au}{L_t} H) : 
ight]^{L_t}$$

All possible configurations in  $\tau \in [\tau_i, \tau_f]$  are sampled. Complex structures like nucleon clustering emerges naturally.





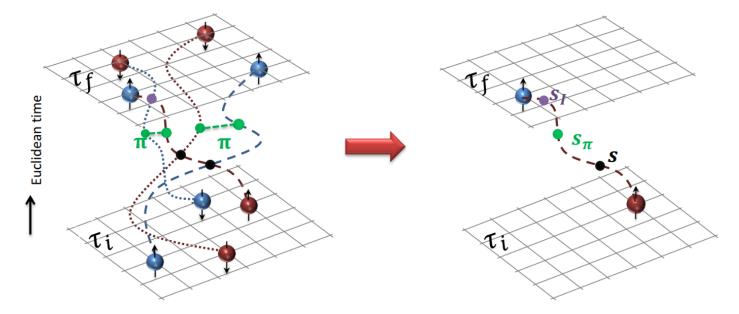


# Lattice EFT: A many-body EFT solver

 Quantum correlations between nucleons are represented by fluctuations of the auxiliary fields.

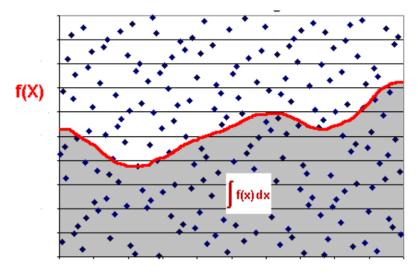
$$: \exp\left[-rac{a_t\,C}{2}(\psi^\dagger\psi)^2
ight] := rac{1}{\sqrt{2\pi}}\int ds : \exp\left[-rac{s^2}{2} + \sqrt{-a_t\,C}s(\psi^\dagger\psi)
ight] :$$

- Long-range interactions such as OPEP or more complex interactions can be represented similarly.
- For fixed aux. fields, product of s.p. states (e.g., Slater determinant) keep the form of product of s.p. states in propagations. ← No N-N interaction



In lattice EFT, solving a general Hamiltonian consists of 5 steps:

- 1. Rewrite expectation value as a path integral using auxiliary field transformation.
- 2. For each field configuration, calculate the amplitude.
- Integrate over the field variables using Monte Carlo algorithms.
- 4. Take the limit  $\tau \to \infty$  to find the true ground state.
- 5. Take the limit  $L \rightarrow \infty$  to eliminate the finite volume effects.



# Compare Lattice EFT and Lattice QCD

**LQCD LEFT** degree of freedom quarks & gluons nucleons and pions  $\sim$ 0.1 fm  $\sim 1~{\sf fm}$ lattice spacing dispersion relation relativistic non-relativistic renormalizability renormalizable effective field theory continuum limit yes no Coulomb difficult easy low  $T / \rho_{\text{sat}}$ accessibility high  $T / low \rho$ sign problem severe for  $\mu > 0$ moderate

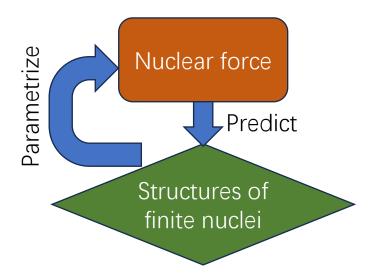
- Lattice EFT share a lot of common features with Lattice QCD. However,
  - Non-rel. → particle number conservation
  - Quadratic dispersion relation
    - → no Fermion doubling problem
  - EFT contains non-renormalizable terms
    - → no continuum limit

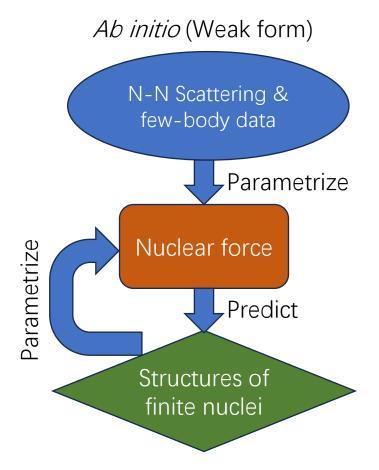
|                   | Two-nucleon force | Three-nucleon force |
|-------------------|-------------------|---------------------|
| LO                | Z LECs            |                     |
| NLO               | XHHMM<br>7LECs    |                     |
| N <sup>2</sup> LO | <u>k4 k</u> (     |                     |
| N <sup>3</sup> LO |                   |                     |

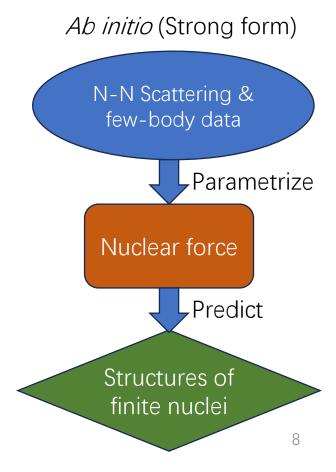
# Nuclear Force Problem

**Nuclear Force Problem:** Can the nuclear force calibrated with the **N-N scattering and few-body data** uniquely and correctly <u>predict</u> the <u>structures of finite nuclei</u>?

Effective nuclear forces (Skyrme, RMF, shell model, etc.)







# Typical nuclear forces



#### **AV18 INTERACTION**



$$v_{ij} = \sum_{\substack{p=1,18\\b=1,18}} v_p(r_{ij}) O_{ij}^p$$

$$O_{ij}^{p=1,14} = \mathsf{N}, \tau_i, \tau_j, \sigma_i, \sigma_j, (\sigma_i, \sigma_j)(\tau_i, \tau_j), S_{ij}, S_{ij}(\tau_i, \tau_j), L.S, L.S(\tau_i, \tau_j), L^{\mathsf{Y}}, L^{\mathsf{Y}}(\tau_i, \tau_j), L^{\mathsf{Y}}(\sigma_i, \sigma_j), L^{\mathsf{Y}}(\sigma_i, \sigma_j)(\tau_i, \tau_j), (L.S)^{\mathsf{Y}}, (L.S)^{\mathsf{Y}}(\tau_i, \tau_j), L^{\mathsf{Y}}(\tau_i, \tau_j), L^{\mathsf{Y}}(\tau_i,$$

CHARGE DEPENDENT

$$O_{ij}^{p=15,17} = T_{ij}, \left(\sigma_i, \sigma_j\right) T_{ij}, S_{ij} T_{ij}$$

$$O_{ij}^{p=18} = \left(\tau_{zi} + \tau_{zj}\right)$$

R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38, 1995.

Nuclear force has strong spin-isospin dependence → Reflected by complicated operator structures

### Nuclear chiral EFT

|                   | 2N force        | 3N force                                     | 4N force |
|-------------------|-----------------|----------------------------------------------|----------|
| LO                | X <del>  </del> | —                                            | _        |
| NLO               | XHAMI           |                                              |          |
| N <sup>2</sup> LO | 시               | HH HX X                                      |          |
| N³LO              | X               | <b>科                                    </b> | †#\  #\  |

# Symmetries of realistic nuclear forces

- A N-N two-body interaction can be uniquely fixed by its matrix elements in a complete basis
- In momentum basis  $|p_1s_1t_1p_2s_2t_2\rangle$  with  $s_1,s_2=\pm 1/2$  the spins,  $t_1,t_2=\pm 1/2$  the isospins, we have the two-by-two matrix elements

$$\langle \boldsymbol{p}_1' s_1' t_1' \boldsymbol{p}_2' s_2' t_2' | V | \boldsymbol{p}_1 s_1 t_1 \boldsymbol{p}_2 s_2 t_2 \rangle$$

- These matrix elements are strictly constrained by symmetries
  - Hermicity
  - Exchange symmetry
  - Translational invariance
  - Galilean invariance
  - Parity
  - Time reversal
  - Spatial rotation
  - Isospin symmetry •

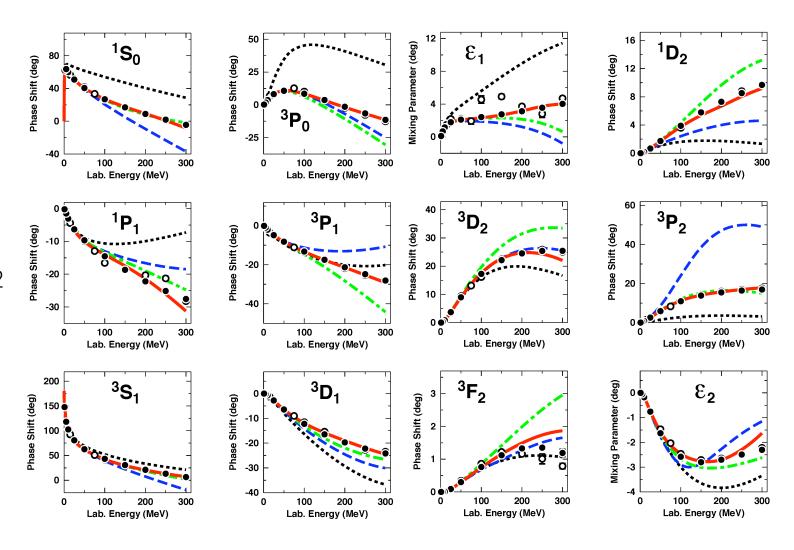
- The QCD respects
  - Discrete symmetries of PCT (exact)
  - Symmetries of Poincaré group (exact)
    - Spatial translation
    - Temporal translation → Energy conservation
    - Spatial rotation
    - Boosts → Galilean invariance
  - Isospin symmetry (approx.)

Spirit of EFT: Use symmetries to write down the most general interactions

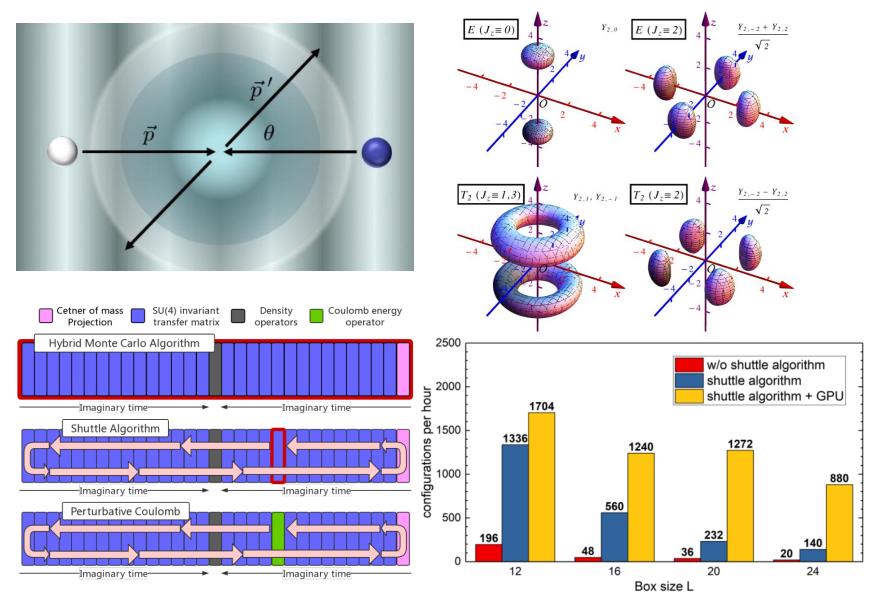
## Parametrization of the nuclear force

- It is conventional to parametrize the nuclear force by matching to the low-energy nucleon-nucleon scattering data
- Spin-1/2 + Spin-1/2 + Orbital
- We first couple the spins
   1/2 + 1/2 = 0 + 1
   Then couple the total spin S=s1+s2
   With the angular momentum L
- Partial wave channels  ${}^{2S+1}L_J$ S = 0, 1

$$L = 0, 1, 2, 3, \cdots$$
 (S, P, D, F, ···)  
 $J = |L - S|, |L - S| + 1, \cdots, L + S$ 



# Effective Field Theory on the Lattice

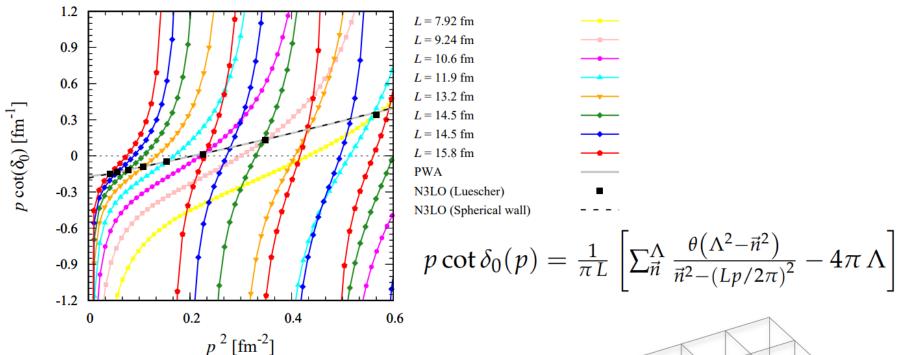


Lattice regularization breaks the **rotational symmetry** and **Galilean invariance**, which must be restored

PLB 760, 309 (2016): Restoration of rotational symm. EPJA 53, 83 (2017): N<sup>2</sup>LO chiral force on lattice PRC 98, 044002 (2018): N<sup>3</sup>LO chiral force on lattice

Shuttle Algorithm is 5-10 times faster than conventional algorithms Combined with GPU, can speed up by 40-50 times PLB 797, 134863 (2019)

### Scattering on the lattice



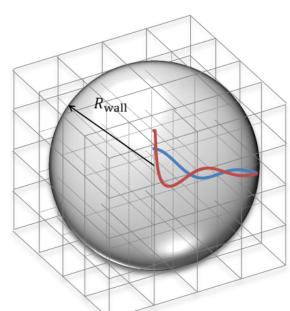
#### Lüscher's finite volume method:

Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

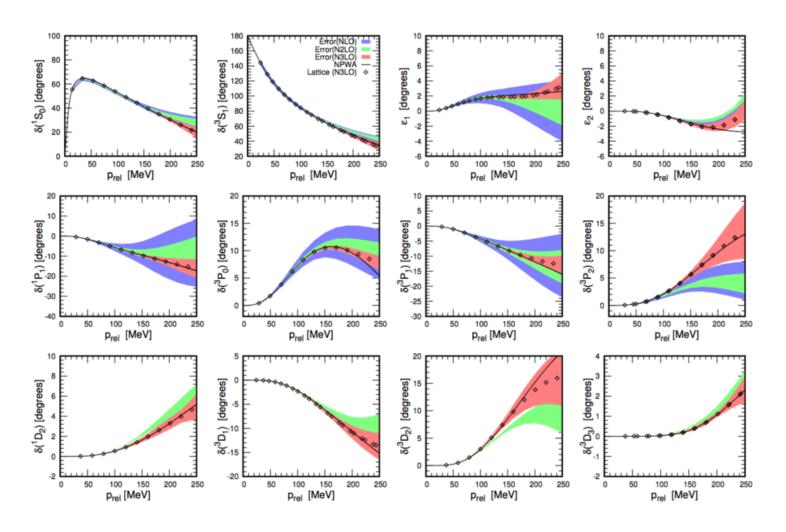
### Spherical wall method:

$$R_{\ell}^{(p)}(r) = N_{\ell}(p) \times \begin{cases} \cot \delta_{\ell}(p) j_{\ell}(p r) - n_{\ell}(p r) \\ \cot \delta_{\ell}(p) F_{\ell}(p r) + G_{\ell}(p r) \end{cases}$$

Nucl. Phys. A 424, 47-59 (1984), Eur. Phys. J. A 34, 185-196 (2007).



### Chiral nuclear force up to N<sup>3</sup>LO: fit on the lattice



fit to N<sup>2</sup>LO: Alarcon, Du, Klein, Lahde, Lee, Ning Li, B.L., Luu, Meissner, EPJA 53, 83 (2017) fit to N<sup>3</sup>LO: Ning Li, Elhatisari, Epelbaum, Lee, B.L., Meissner, PRC 98, 044002 (2018)

# Nuclear binding near a quantum phase transition

PRL 117, 132501 (2016)

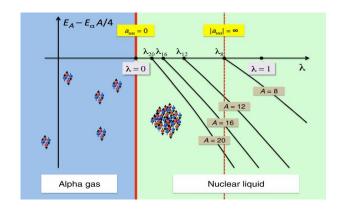
Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

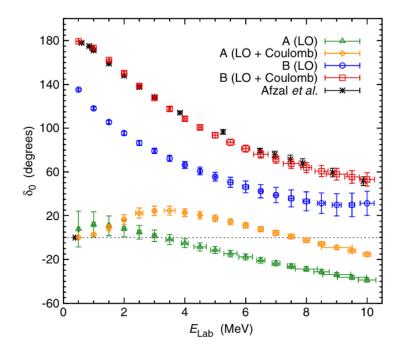
week ending 23 SEPTEMBER 2016



#### Nuclear Binding Near a Quantum Phase Transition

Serdar Elhatisari, <sup>1</sup> Ning Li, <sup>2</sup> Alexander Rokash, <sup>3</sup> Jose Manuel Alarcón, <sup>1</sup> Dechuan Du, <sup>2</sup> Nico Klein, <sup>1</sup> Bing-nan Lu, <sup>2</sup> Ulf-G. Meißner, <sup>1,2,4</sup> Evgeny Epelbaum, <sup>3</sup> Hermann Krebs, <sup>3</sup> Timo A. Lähde, <sup>2</sup> Dean Lee, <sup>5</sup> and Gautam Rupak <sup>6</sup>





| Nucleus          | A (LO)     | B (LO)    | A (LO + Coulomb) | B (LO + Coulomb) | Experiment |
|------------------|------------|-----------|------------------|------------------|------------|
| <sup>3</sup> H   | -7.82(5)   | -7.78(12) | -7.82(5)         | -7.78(12)        | -8.482     |
| <sup>3</sup> He  | -7.82(5)   | -7.78(12) | -7.08(5)         | -7.09(12)        | -7.718     |
| <sup>4</sup> He  | -29.36(4)  | -29.19(6) | -28.62(4)        | -28.45(6)        | -28.296    |
| <sup>8</sup> Be  | -58.61(14) | -59.73(6) | -56.51(14)       | -57.29(7)        | -56.591    |
| <sup>12</sup> C  | -88.2(3)   | -95.0(5)  | -84.0(3)         | -89.9(5)         | -92.162    |
| <sup>16</sup> O  | -117.5(6)  | -135.4(7) | -110.5(6)        | -126.0(7)        | -127.619   |
| <sup>20</sup> Ne | -148(1)    | -178(1)   | -137(1)          | -164(1)          | -160.645   |

- The nuclear force can be either local (position-dependent) or non-local (velocity-dependent).
- Locality is an essential element for nuclear binding.

### Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$H_0 = K + \frac{1}{2} C_{SU4} \sum_{\boldsymbol{n}} : \tilde{\rho}^2(\boldsymbol{n}) :$$

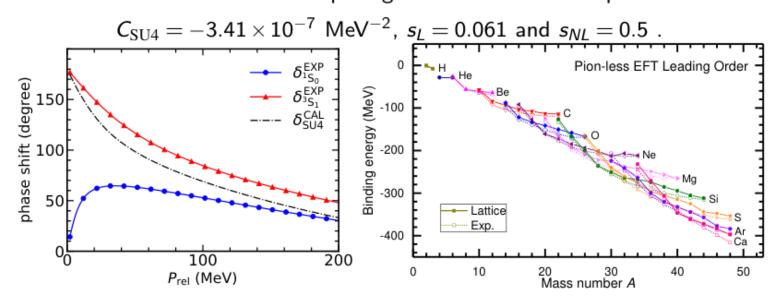
The smeared density operator  $\tilde{\rho}(n)$  is defined as

$$\tilde{\rho}(\mathbf{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}) \tilde{a}_{i}(\mathbf{n}) + s_{L} \sum_{|\mathbf{n}' - \mathbf{n}| = 1} \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}') \tilde{a}_{i}(\mathbf{n}'), \tag{1}$$

where *i* is the joint spin-isospin index

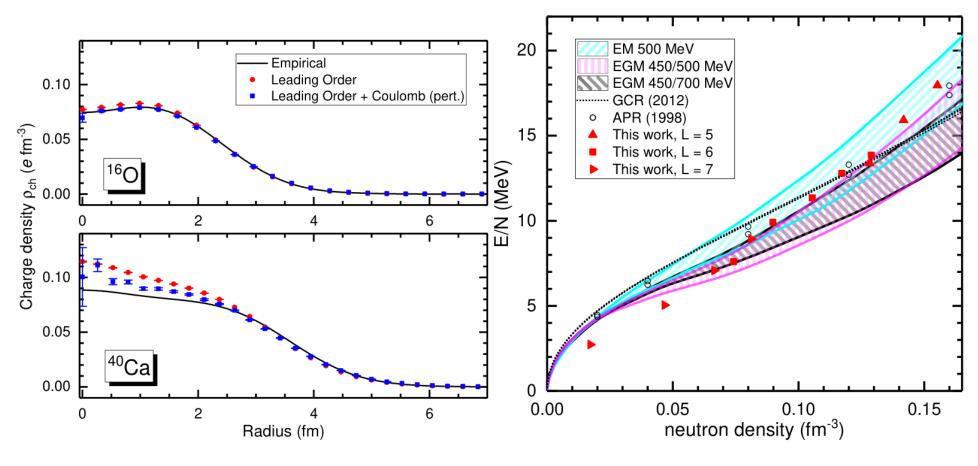
$$\tilde{a}_i(\mathbf{n}) = a_i(\mathbf{n}) + s_{NL} \sum_{|\mathbf{n}' - \mathbf{n}| = 1} a_i(\mathbf{n}'). \tag{2}$$

In this work we use a lattice spacing a = 1.32 fm and the parameter set



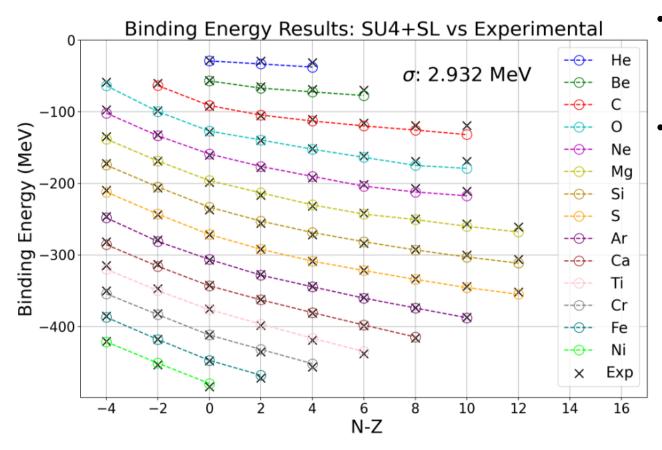
### Essential elements for nuclear binding

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.



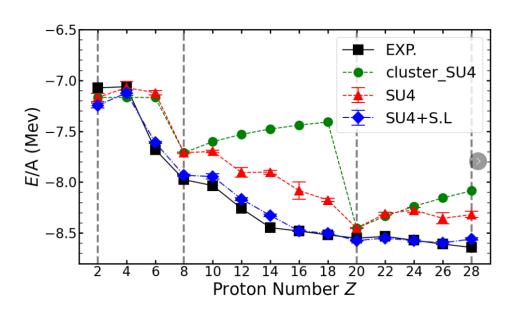
Lu, Li, Elhatisari, Lee, Epelbaum, Meissner, Phys. Lett. B 797 (2019) 134863

## Nuclear binding energies with spin-orbit term (preliminary)



- Spin-orbit term is essential for shell evolutions. (proper SL term do not induce sign problem)
- SU(4) + SL Hamiltonian, **5 parameters** optimized with masses of <sup>4</sup>He, <sup>16</sup>O, <sup>24</sup>Mg, <sup>28</sup>Si, <sup>40</sup>Ca, etc.

- Average error for **76** even-even nuclei: **2.932 MeV Applicable to light/medium mass nuclei**Zhong-Wang Niu et al., in preparation
- Errors in other models
  - Relativistic mean field (PC-PK1): 2.258 MeV
     Peng-Wei Zhao et al., PRC82, 054319 (2010)
  - Non-rel. mean field (UNDEF1): 3.380 MeV Kortelainen et al., PRC 85, 024304 (2012).
  - Finite range droplet model: 1.142 MeV
     P. Moller et al., Atom. Data Nucl. Data Tables 109, 1 (2016)



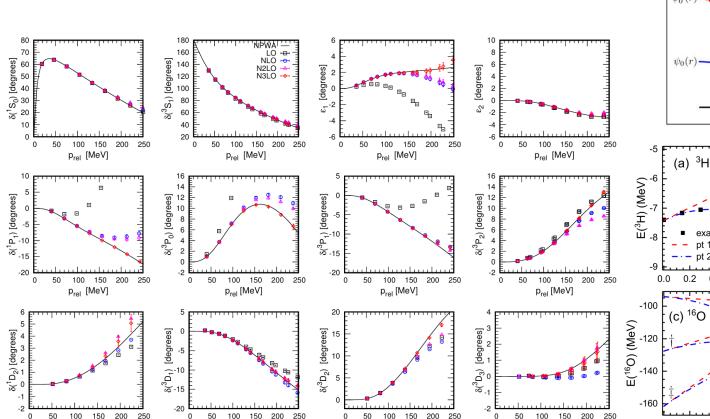
## Precision lattice chiral nuclear forces

p<sub>rel</sub> [MeV]

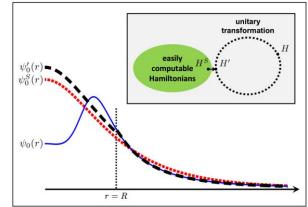
High-precision fit to N-N scattering phase shifts at N<sup>3</sup>LO Alarcon et al., EPJA 53, 83 (2017) Li et al., PRC 98, 044002 (2018)

p<sub>rel</sub> [MeV]

p<sub>rel</sub> [MeV]

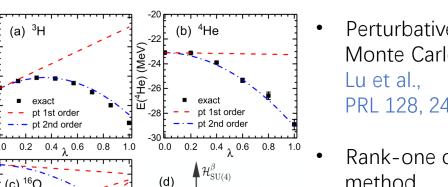


p<sub>rel</sub> [MeV]



pt 2nd order

0.4  $\lambda$  0.6 0.8 1.0



### Implementation in lattice calculations:

- Wave function matching method Elhatisari et al., Nature 630, 59 (2024)
- Perturbative quantum Monte Carlo method PRL 128, 242501 (2022)
- Rank-one operator method Ma et al., PRL 132, 232502 (2024)

### Pinhole algorithm: Schematic

In terms of auxiliary fields, the amplitude Z can be written as a path-integral,

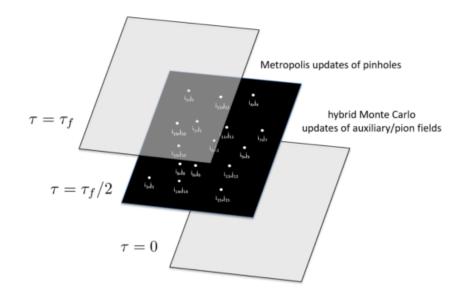
$$Z_{f,i}(i_1,j_1,\cdots,i_A,j_a;\boldsymbol{n}_1,\cdots\boldsymbol{n}_A;L_t)$$

$$=\int \mathscr{D}s\mathscr{D}\pi\langle\Psi_f(s,\pi)|\rho_{i_1,j_1,\cdots,i_A,j_A}(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A)|\Psi_i(s,\pi)\rangle.$$

We generate a combined probability distribution

$$P(s,\pi,i_1,j_1,\cdots,i_A,j_a;\boldsymbol{n}_1,\cdots\boldsymbol{n}_A) = |\langle \Psi_f(s,\pi)|\rho_{i_1,j_1,\cdots,i_A,j_A}(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A)|\Psi_i(s,\pi)\rangle|$$

by updating both the auxiliary fields and the pinhole quantum numbers.

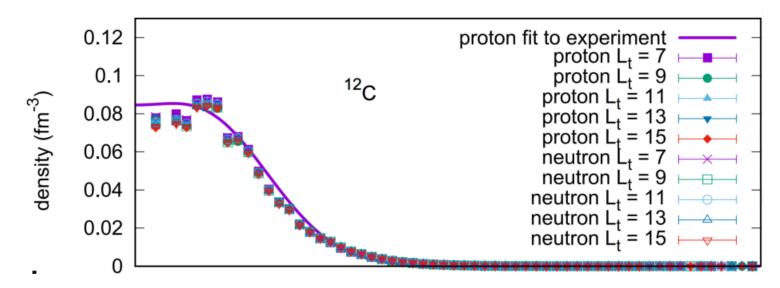


### Pinhole algorithm: Intrinsic density distributions

Densities relative to the center of mass:

$$\rho_{\text{c.m.}}(r) = \sum_{\boldsymbol{n}_1, \dots, \boldsymbol{n}_A} |\Phi(\boldsymbol{n}_1, \dots \boldsymbol{n}_A)|^2 \sum_{i=1}^A \delta(r - |\boldsymbol{r}_i - \boldsymbol{R}_{\text{c.m.}}|)$$

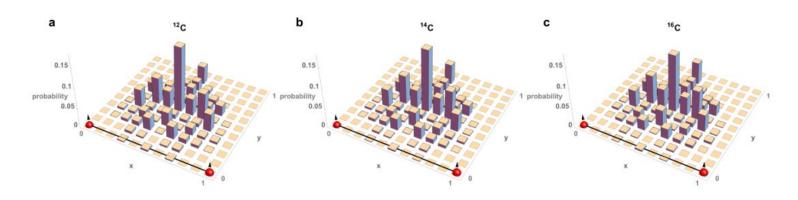
- First LEFT calculation of nuclear intrinsic densities.
- Proton radius is included by numerical convolution  $\rho(\mathbf{r}) = \int \rho_{\text{Point}}(\mathbf{r}')e^{-(\mathbf{r}-\mathbf{r}')/(2a^2)}d^3r'$ , proton radius  $a \approx 0.84$  fm.

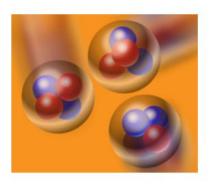


- Independent of projection time  $L_t \iff$  In ground state
- Sign problem suppressed → Small errorbars Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)

# Alpha clustering in nucleus

Positions of 3rd proton relative to the other two in  $^{12,14,16}$ C





- Hoyle state: Triple-α resonance, essential for creating
   12C in stars (Hoyle, 1954). Fine-tuning for life?
   Epelbaum et al., Phys. Rev. Lett. 106, 192501 (2011)
- Perspective: important many-body correlations, understand internal structures of ground and excited states by ab initio calculations.
- Next step: high-precision chiral interaction → EM form factors, shape coexistence, clustering, ... Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)

Alpha clusters seem to be **fundamental unit** in several important scenarios.

E.g., the 2<sup>nd</sup> 0+ state of C12, or the **Hoyle** state, sensitively determines the abundance of Carbon in our universe.

Many evidences suggest that the Hoyle state is a **clustering state**.

Can be explored from ab initio lattice EFT calculations.

Recent review for nuclear clustering: M. Freer, H. Horiuchi, Y. Kanada-En'yo, Dean Lee, U.-G. Meißner, Rev. Mod. Phys. 90, 035004 (2018).

## Alpha clustering in nucleus

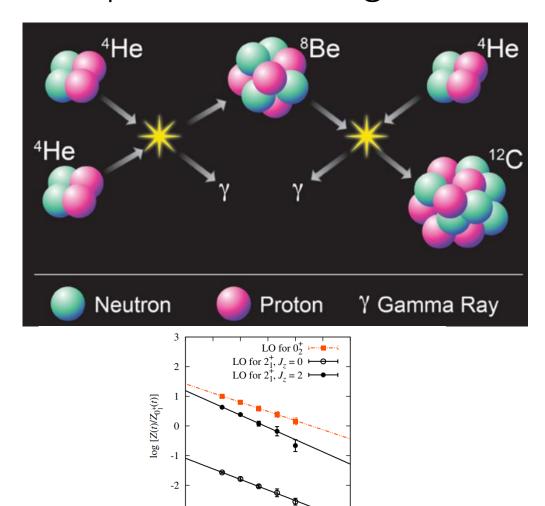
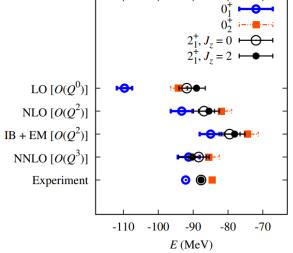


FIG. 1: Extraction of the excited states of  $^{12}\mathrm{C}$  from the time dependence of the projection amplitude at LO. The slope of the logarithm of  $Z(t)/Z_{0_1^+}(t)$  at large t determines the energy relative to the ground state.

0.02 0.04 0.06 0.08 0.1 0.12  $t \, (\text{MeV}^{-1})$ 

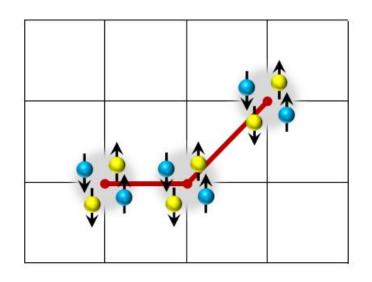


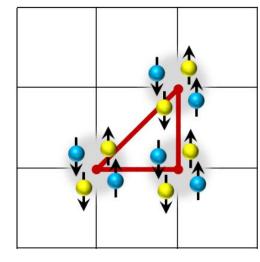
Lattice EFT can capture the essential many-body correlations In clustering states, e.g, Hoyle state

Beyond-mean-field effects: Clustering states are difficult for mean-field calculations -> call for precision ab initio methods

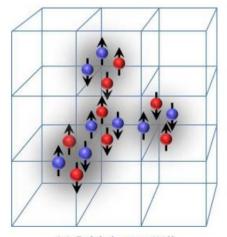
| -110 -100 -90 -80 -70<br>E (MeV)                                                                                                                                     |     |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| Ab initio calculation of the Hoyle state E Epelbaum, H Krebs, D Lee, UG Meißner Phys. Rev. Lett 106, 192501                                                          | 424 | 2011 |
| Lattice simulations for few-and many-body systems D Lee Progress in Particle and Nuclear Physics 63 (1), 117-154                                                     | 327 | 2009 |
| Structure and rotations of the Hoyle state E Epelbaum, H Krebs, TA Lähde, D Lee, UG Meißner Physical Review Letters 109 (25), 252501                                 | 312 | 2012 |
| Microscopic clustering in light nuclei  M Freer, H Horiuchi, Y Kanada-En'yo, D Lee, UG Meißner Review of Modern Physics 90, 035004                                   | 274 | 2018 |
| Ab initio alpha-alpha scattering<br>S Elhatisari, D Lee, G Rupak, E Epelbaum, H Krebs, TA Lähde, T Luu,<br>Nature 528 (7580), 111-114                                | 171 | 2015 |
| Ab Initio Calculation of the Spectrum and Structure of O 16<br>E Epelbaum, H Krebs, TA Lähde, D Lee, UG Meißner, G Rupak<br>Physical review letters 112 (10), 102501 | 168 | 2014 |

## Intrinsic structures of alpha clustering states

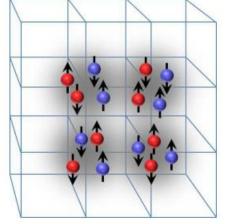




- Structure of clustering states can be inferred by preparing different initial state configurations.
- Educated guess for the shape of the state:
   Best guess has largest overlap with true eigenstate
- → Converges quickly
- Provides indirect evidences of the nuclear shapes



(a) Initial state "A",8 equivalent orientations.



(b) Initial states "B" and "C", 3 equivalent orientations.

#### Structure and rotations of the Hoyle state,

Evgeny Epelbaum, Hermann Krebs, Timo A Lähde, Dean Lee, Ulf-G Meißner, PRL 109, 252501 (2012)

Ab Initio Calculation of the Spectrum and Structure of O 16

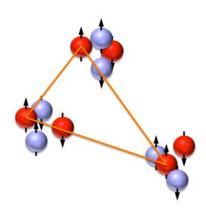
Evgeny Epelbaum, Hermann Krebs, Timo A Lähde, Dean Lee,
Ulf-G Meißner, Gautam Rupak, PRL112, 102501 (2014)

# Clustering state tomography

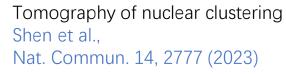
• With **pinhole algorithm**, the clustering geometry can be extracted from the true ab initio eigenstates. E.g., relative configurations of alpha clusters in Carbon-12.

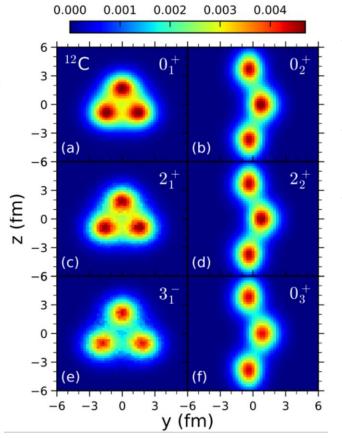
We always align the longest edge with the x-axis and keep the triangle in the x-y plane.

$$\rho(d_1, d_2, d_3) = \sum_{j_1, j_2, j_3} \sum_{\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3} |\Phi_{\uparrow, j_1, \uparrow, j_2, \uparrow, j_3}(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3)|^2 \times \sum_{P(123)} \delta(|\mathbf{n}_1 - \mathbf{n}_2| - d_3) \delta(|\mathbf{n}_1 - \mathbf{n}_3| - d_2) \delta(|\mathbf{n}_2 - \mathbf{n}_3| - d_1),$$



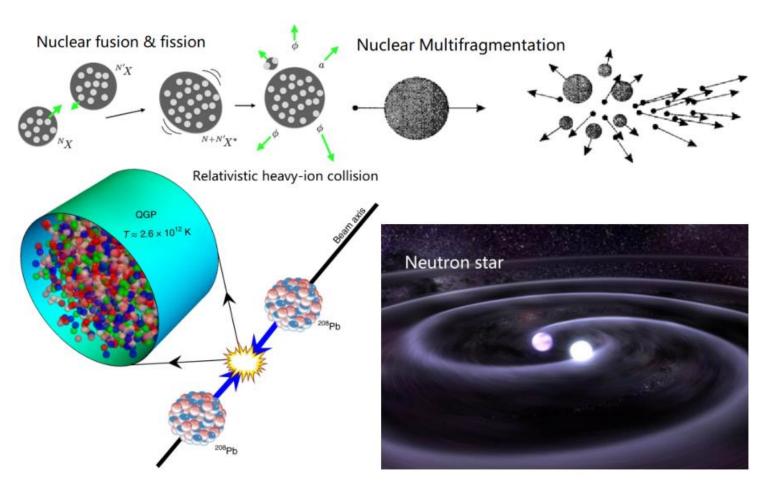
Three-body correlation in Carbon isotopes Elhatisari et al., PRL 119, 222505 (2017)

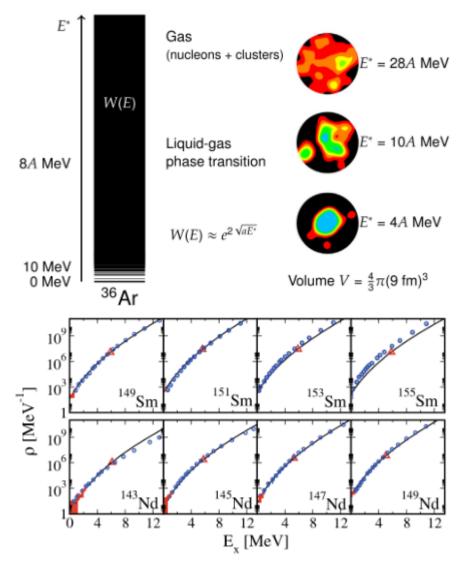




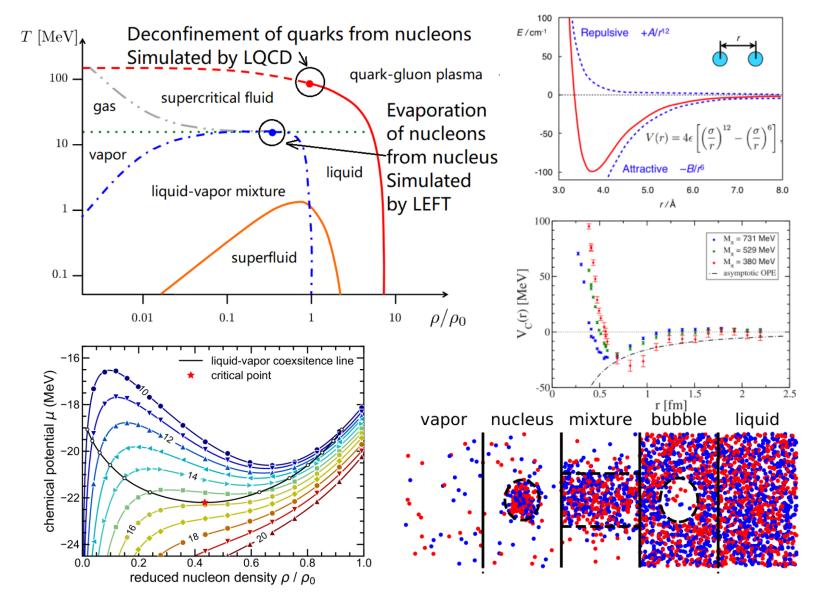
- Hoyle state is composed of a "bent-arm" or obtuse triangular arrangement of alpha clusters.
- The low-lying states of <sup>12</sup>C are either equilateral triangle or obtuse triangle.
- The states with the equilateral triangle formation also have a dual description in terms of particle-hole excitations in the mean-field picture.

# Nuclear thermodynamics





## Nuclear thermodynamics from lattice EFT



nuclear liquid v.s. normal liquid nuclear force v.s. van der Waals force nuclear liquid-gas phase transition v.s. water liquid-gas phase transition

Ab initio calculation for liquid-gas phase transition in symmetric nuclear matter based on lattice EFT

Lu et al., PRL 125, 192502 (2020)

10~1000 times speed up with new Pinhole-trace algorithm

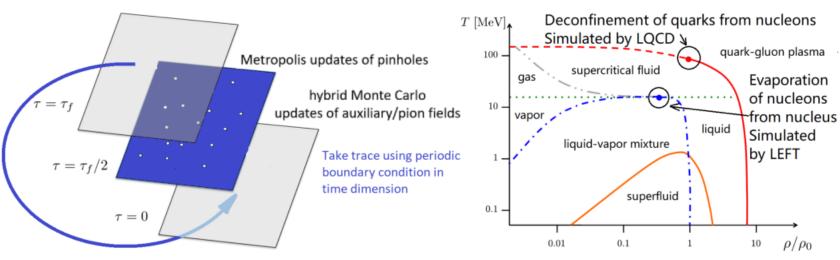


### Simulate canonical ensemble with pinhole trace algorithm

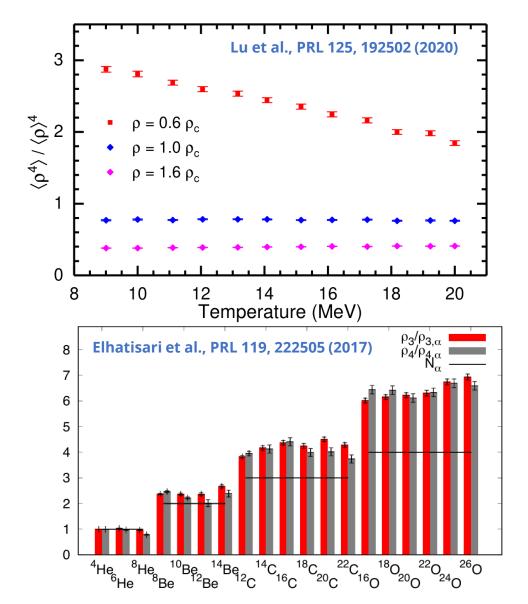
- All we need: partition function  $Z(T, V, A) = \sum_k \langle \exp(-\beta H) \rangle_k$ , sum over all othonormal states in Hilbert space  $\mathcal{H}(V, A)$ .
- The basis states  $|\mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_A\rangle$  span the whole A-body Hilbert space.  $\mathbf{n}_i = (\mathbf{r}_i, s_i \sigma_i)$  consists of coordinate, spin, isospin of i-th nucleon.
- Cannonical partition function can be expressed in this complete basis:

$$Z_{A} = \operatorname{Tr}_{A}\left[\exp(-\beta H)\right] = \sum_{\boldsymbol{n}_{1}, \dots, \boldsymbol{n}_{A}} \int \mathscr{D} s \mathscr{D} \pi \langle \boldsymbol{n}_{1}, \dots, \boldsymbol{n}_{A} | \exp\left[-\beta H(s, \pi)\right] | \boldsymbol{n}_{1}, \dots, \boldsymbol{n}_{A} \rangle$$

- Pinhole algorithm + periodicity in  $\beta$  = Pinhole trace
- Apply twisted boundary condition in 3 spatial dimensions to remove finite volume effects. Twist angle  $\theta$  averaged with MC.



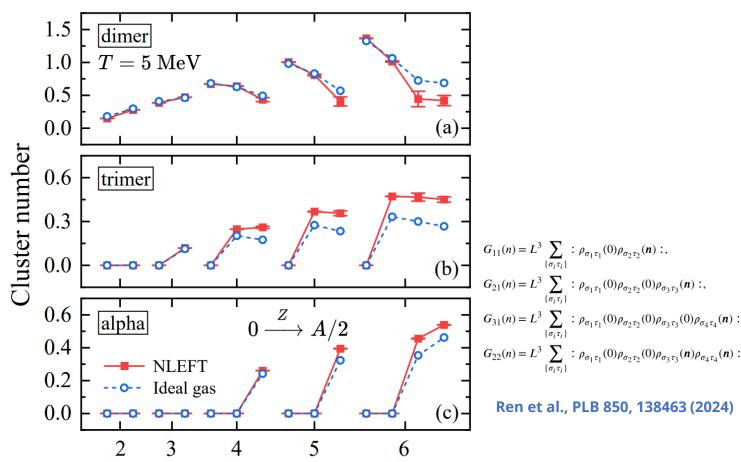
# Clustering in ground states and hot nuclear matter



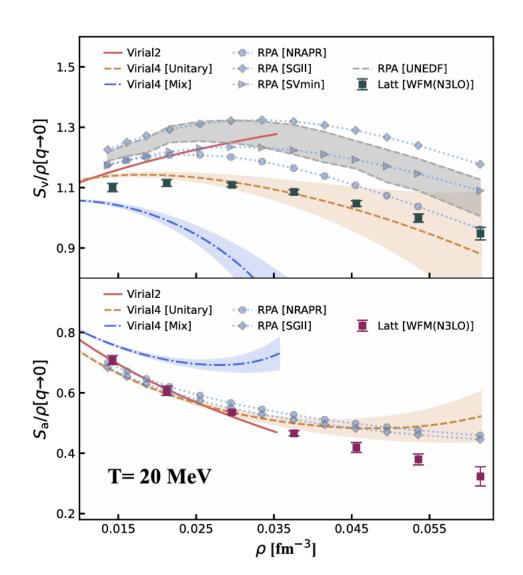
Many clustering indicator can be built from wave functions. Works for ground states / excited states / finite temperature.

Monitoring how clustering evolves with  $\mathcal{N}/\mathcal{Z}$ ,  $\rho$ , T, ...

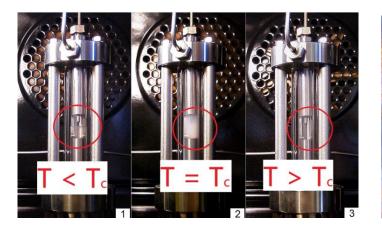
Total nucleon number A



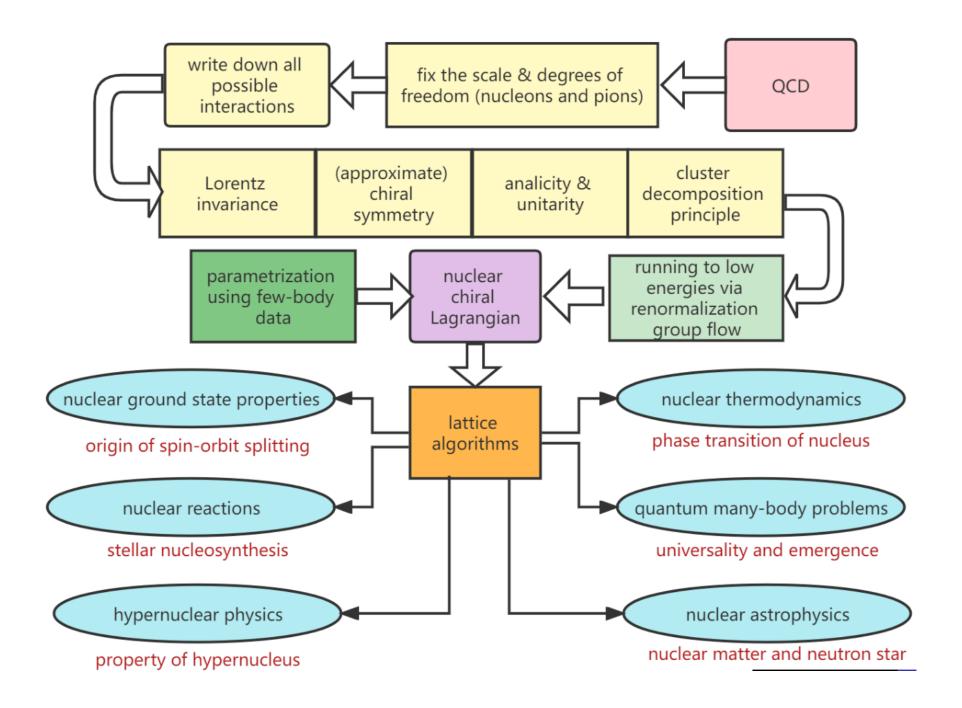
### Correlations in hot nuclear matter



- Structure factors are Fourier transforms of correlation functions  $S_V(\boldsymbol{q}) = \int d^3r [\langle \hat{\rho}(\boldsymbol{r}+\boldsymbol{r}')\hat{\rho}(\boldsymbol{r}')\rangle \rho_0^2] e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$   $S_a(\boldsymbol{q}) = \int d^3r [\hat{\rho}_z(\boldsymbol{r}+\boldsymbol{r}')\hat{\rho}_z(\boldsymbol{r}')\rangle \rho_{z0}^2] e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$
- Key for modeling Core-collapse supernovae explosions via neutrino-nucleon scattering
- Lattice EFT provides ab initio calculation with a N<sup>3</sup>LO chiral interaction based on a rank-one operator method Ma et al., PRL 132, 232502 (2024)







# Summary and perspective

- Nuclear Lattice EFT is a quantum many-body problem solver designed for low-energy nuclear physics.
- The wave functions for ground state / excited states and density matrices for finite temperature systems can be solved exactly.
   Collective correlations can be extracted accordingly.
- Future with NLEFT:
  - More precision nuclear forces
  - Advanced quantum many-body algorithms
  - Ab initio nuclear spectroscopy
  - Ab initio nuclear thermodynamics
  - Ab initio calculation of electroweak observables
  - ...

# Summary and perspective

- Lattice EFT is a quantum many-body problem solver designed for low-energy nuclear physics.
- The wave functions for ground state / excited states and density matrices for finite temperature systems can be solved exactly. Collective correlations can be extracted accordingly.
- Future with NLEFT:
  - More precision nuclear forces
  - Advanced quantum many-body algorithms
  - Renormalization of effective field theory
  - Ab initio nuclear spectroscopy
  - Ab initio nuclear thermodynamics
  - Ab initio calculation of electroweak observables
  - ...

# Thank you for you attention!