Search for di-Higgs Production with WW* $\gamma\gamma$

Yaquan Fang (IHEP, Beijing)

Di-Higgs 2020: Opportunities and Challenges T.D. Lee Institute & Shanghai Jiao Tong Univ. Nov 19-21, 2020

hh analyses

- The bb, WW*, ττ channels have the highest BRs
- γγ has the di-photon mass resonance (bump search)
- SM di-higgs cross-section at at 13TeV, less than 0.1% that of SM Higgs
- Some BSM models (2HDM,KK-Gravitons, new scalar) can enhance the cross-section significantly in some region of phase space.
- WW*γγ can bring you 0Lep, 1Lep, 2Lep subchannel.

$hh \rightarrow WW^*\gamma\gamma$: working mode

- Theorists always goes ahead of experimentalists.
 Occasionally, it is not true.
- We cooperated closely with theorists (Hong-jian He's group) and published Pheno. papers about HH channels.
 - JHEP06 (2018) 090 (WW*γγ), ", JHEP06 (2018) 090 (WW*WW*)
- Propose and lead those analyses in ATLAS:
 - Low statistics prevent $\gamma\gamma 2L$
 - Heavy QCD background for γγ0L(jets)
 - CMS doesn't have dedicated WW* $\gamma\gamma$ analysis.
 - Multilepton final states

Pheno. Study on $H \rightarrow hh \rightarrow WW^*\gamma\gamma$

WW* yy analyses

- $\bullet~Generator:~MG5_aMC$
- Showering: Pythia8

Phys. Lett. B 755(2016), 509-522

Fig. 1. Parameter space in M_H - ζ plane for 2HDM-I [plot-(a)] and 2HDM-II [plot-(b)], where the red dots present the viable points obeying the consistency requirement of the Higgs potential as explained in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

- According to SM Higgs h, one of W has to be off-shell.
- The analyses included two channels according to the decay of WW* (lvqqγγ, lvlvγγ)

Selections of WW(lvlv) yy analysis (1)

Irreducible backgrounds:

 $\ell \nu \ell \nu \gamma \gamma$ and $\ell \ell \gamma \gamma$ and SM Higgs is not negligible.

Selections on two leptons and two photons

 $P_T(\gamma), P_T(q) > 25 \text{ GeV}, \quad P_T(\ell) > 15$ $|\eta(\gamma)|, |\eta(q)|, |\eta(\ell)| < 2.5.$

Treatment of fake backgrounds (negligible)

$$\epsilon_{q \to \gamma} \approx 3.6 \times 10^{-4}, \qquad \epsilon_{g \to \gamma} \approx 3.6 \times 10^{-5}$$

Mass Window and ET missing selections:

120 GeV < $M_{\gamma\gamma}$ < 130 GeV, $𝔅_T$ > 20 GeV Working point for b veto ∶ eff(b-evto) =22% (ATLAS).

Selections of WW(lvlv) yy analysis (2)

Selections of WW(lvqq) yy analysis (1)

Irreducible backgrounds:

 $pp \rightarrow q\bar{q}' \ell \nu \gamma \gamma$

Selections on one lepton, two photons and two jets

 $P_T(\gamma), P_T(q) > 25 \text{ GeV}, \quad P_T(\ell) > 15 \text{ GeV},$ $|\eta(\gamma)|, |\eta(q)|, |\eta(\ell)| < 2.5.$

Treatment of fake backgrounds

 $\epsilon_{q \to \gamma} \approx 3.6 \times 10^{-4}, \qquad \epsilon_{g \to \gamma} \approx 3.6 \times 10^{-5}$

Mass Window and ET missing selections:

120 GeV $< M_{\gamma\gamma} < 130$ GeV, 10 GeV $< \not E_T < 80$ GeV. Working point for b veto : eff(b-evto) =22% (ATLAS).

 $M_{qq} < 250 \, \mathrm{GeV}$

Selections of WW(lvqq) yy analysis (2)

 $M_T(q\bar{q}'\ell\nu) < 200 \text{ GeV}.$

 $1 < \Delta R(\gamma \gamma) < 3.8$

For M_H >=600 GeV 120 GeV < $M_{\gamma\gamma}$ < 130 GeV, M_{qq} < 250 GeV, $P_T(\gamma) > 120$ GeV, $M_T(q\bar{q}'\ell\nu) < 350$ GeV, $\not{E}_T > 10$ GeV, $\Delta\phi(\gamma\gamma) < 1.6$, $\Delta R(\gamma\gamma) < 1.7$.

Results for wwyy analyses

$\sigma(pp \rightarrow H \rightarrow hh \rightarrow WW^*\gamma\gamma) = 3$ fb.

$pp \rightarrow \ell \nu \ell \nu \gamma \gamma$	Sum	Selection + Basic Cuts	$M_{\gamma\gamma}, \not \in_T$	Final Cuts
Signal (fb)	0.315	0.0165	0.0147	0.0107
$BG[\ell \nu \ell \nu \gamma \gamma + \ell \ell \gamma \gamma]$ (fb)	153.3	0.937	0.00394	0.000169
$BG[t\bar{t}h]$ (fb)	0.0071	0.000493	0.000452	0.000051
BG[Zh] (fb)	0.175	0.0331	0.00247	0.000065
BG[hh] (fb)	0.00222	0.000132	0.000116	0.000074
BG[Total] (fb)	153.48	0.971	0.00698	0.000359
Significance(Z ₀)	0.440	0.289	2.44	4.05
$pp \rightarrow q\bar{q}' \ell \nu \gamma \gamma$	$\sigma_{ m total}$	Selection + Basic Cuts	$M_{\gamma\gamma}, M_{qq}, \not \in_T$	Final Cuts
Signal (fb)	1.32	0.0891	0.0671	0.0533
$BG[qq\ell\nu\gamma\gamma]$ (fb)	31.59	0.581	0.0291	0.00672
$BG[\ell\nu\gamma\gamma]$ (fb)	143.3	0.0642	0.00454	0.000891
BG[Wh] (fb)	0.42	0.00509	0.00335	0.00139
BG[WWh] (fb)	0.0023	0.000210	0.000127	0.000057
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.00111	0.000441
BG[hh] (fb)	0.00462	0.000291	0.000197	0.000155
BG[th] (fb)	0.0129	0.000479	0.000247	0.000104
BG[Total] (fb)	175.35	0.653	0.0386	0.0098
Significance(Z ₀)	1.72	1.87	4.86	6.22

M_H = 300 GeV, L = 300 fb ⁻¹,

$\sigma(pp \rightarrow H \rightarrow hh \rightarrow WW^*\gamma\gamma) = 1$ fb.

$pp \rightarrow \ell \nu \ell \nu \gamma \gamma$	Sum	Selection + Basic Cuts	$M_{\gamma\gamma}, \not \!$	Final Cuts
Signal (fb)	0.105	0.00578	0.00540	0.00451
$BG[\ell\nu\ell\nu\gamma\gamma + \ell\ell\gamma\gamma] \text{ (fb)}$	153.3	0.937	0.00348	0.000092
$BG[t\bar{t}h]$ (fb)	0.0071	0.000493	0.000452	0.000028
BG[Zh] (fb)	0.175	0.0331	0.00138	0.000029
BG[<i>hh</i>] (fb)	0.00222	0.000132	0.000117	0.000070
BG[Total] (fb)	153.48	0.971	0.00543	0.000219
Significance(Z_0)	0.464	0.321	3.53	7.76
$pp ightarrow q ar q' \ell u \gamma \gamma$	$\sigma_{ m total}$	Selection + Basic Cuts	$M_{\gamma\gamma}, M_{qq}, \not \!$	Final Cuts
Signal (fb)	0.44	0.0260	0.0163	0.0148
$BG[qq\ell\nu\gamma\gamma]$ (fb)	31.59	0.581	0.00950	0.00241
$BG[\ell\nu\gamma\gamma]$ (fb)	143.3	0.0642	0.00176	0.000395
BG[Wh] (fb)	0.42	0.00509	0.00119	0.000696
BG[WWh] (fb)	0.0023	0.000210	0.000035	0.000035
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.000402	0.000237
BG[hh] (fb)	0.00462	0.000291	0.000120	0.000087
BG[th] (fb)	0.0129	0.000479	0.000094	0.000058
BG[Total] (fb)	175.35	0.653	0.0131	0.00392
Significance(Z_0)	1.82	1.75	6.70	9.29

 $M_{H} = 600 \text{ GeV},$ L = 3ab ⁻¹,

Interpretation

$(H \rightarrow)hh \rightarrow WW^*\gamma\gamma$ with ATLAS detector

Object definition

Common in most analyses:

Objects	Selections
Photons	TightID EM, trk isolation Lead P _T /m _{γγ} >0.35, Sub P _T /m _{γγ} >0.25
Jets	P _T >25 GeV, η <2.5 Jet vertex tagger (JVT) selection
Muons	Medium ID $P_T>4$ GeV, $ \eta <2.5$, d_0 significance, Z_0 selection B-jet muon correction
Electrons	Loose Likelihood ID, P_T>10 GeV $ \eta $ <2.47 excluding the crack region
b-jets	B-tagging selection with eff. 70%

Selections

- At least two central jets
- B-veto.
- At least one lepton with Pt>10 GeV

We found that the analysis is not very sensitive to ${\rm E_T}^{\rm miss}$

> For high heavy mass and non-resonance cases, selection of $P_T^{\gamma\gamma}$ can effectively suppress bkg without significant dropping the signal efficiencies.

Background estimation

> Direct fits on the continuum background are implemented w/ and w/o $P_{T}^{\gamma\gamma}$ selection

Results

Process Number of events $p_{\rm T}^{\gamma\gamma}\!>100~{\rm GeV}$ No $p_{\rm T}^{\gamma\gamma}$ selection Continuum background 22 ± 5 5.1 ± 2.3 SM single-Higgs 1.92 ± 0.15 1.0 ± 0.09 0.038 ± 0.004 SM di-Higgs 0.046 ± 0.004 Sum of expected background 24 ± 5 6.1 ± 2.3

33

Nevent in the mass window: $m\downarrow H \pm 2\sigma$

Table 6 The 95% CL upper limits for the non-resonant production and the ratios of the limits to the SM cross-section value of $\sigma(pp \rightarrow HH) = 33.4^{+2.8}_{-2.8}$ fb [17]. The $\pm 1\sigma$ and $\pm 2\sigma$ intervals around the median limit are also presented

7

	$+2\sigma$	$+1\sigma$	Median	-1σ	-2σ	Observed
Upper limits on $\sigma(HH)$ (pb)	12	8.0	5.4	3.9	2.9	7.7
Upper limits on $\sigma(HH) \times B(\gamma \gamma WW^*)$ (fb)	12	7.8	5.3	3.8	2.8	7.5
Ratios of limits over the SM $\sigma(HH)$	360	240	160	120	87	230

For non-resonance search:

Data

the observed(expected) limits are 230(160)XSM For the resonance search (mass 275-400 GeV): the observed(expected)limit ranges between 6.1-40 (4.4-17.6) pb.

Conclusion

- We work with theorist closely and proposed $H \rightarrow hh \rightarrow WW^*\gamma\gamma$ in ATLAS:
 - No obvious excess has been observed.
 - limits have been set with O(10 pb).
 - The best limit for non-resonance is 230(160)XSM.
- Updated results will be come very soon with full RUN2 data.
 - Analysis strategies will be upgraded.
 - DT will be used.
 - OL, 2L sub-channels will be investigated...

Backup slides

Continuous Background estimation

With 13.3 fb-1 and due to the lack of statistics in the 1-lepton (right plot), a simultaneous fit with 2nd exponential function on 0-lepton (left plot) and 1-lepton di-photon mass spectra is implemented to extract the continuum bkg.