

NLO EW corrections to tau pair production via photon fusion in Pb-Pb UPC

Tuesday, 13 May 2025 17:35 (20 minutes)

In this talk, we show the results of NLO EW correction to $\gamma\gamma \rightarrow \tau^+\tau^-$ process in Pb-Pb UPC. We find that the EW correction $\delta\sigma_{\text{EW}}$ decreases the total cross section $\sigma_{\text{NLO}} = \sigma_{\text{LO}} + \delta\sigma_{\text{EW}}$ by -3% at Pb-Pb center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV.

The weak correction plays significant role whose contribution is about -4 times of that of QED. The CMS and ATLAS collaborations use the reaction $\gamma\gamma \rightarrow \tau^+\tau^-$ in Pb-Pb and proton-proton UPC to constrain tau's anomalous magnetic moment a_τ . By parameterizing the $\gamma\tau\tau$ vertex with two form factors $F_{1,2}$, the cross section can be written as $\sigma_{a_\tau} = \sigma_{\text{LO}} + \delta\sigma_{a_\tau}$, where $\delta\sigma_{a_\tau}$ is proportional to a_τ . The impact of NLO EW corrections on a_τ bounds in a Pb-Pb UPC is limited, as the current experimental bounds are loose. We also find that various differential distributions of the two ratios $d\sigma_{\text{NLO}}/d\sigma_{\text{LO}}$ and $d\sigma_{a_\tau}/d\sigma_{\text{LO}}$ have different lineshapes. This work is significant to precisely study the interaction of $\gamma\tau\tau$ via $\gamma\gamma \rightarrow \tau^+\tau^-$ process.

Primary authors: JIANG, Jun; LU, Peng-Cheng; SI, Zong-Guo; ZHANG, Han; ZHANG, Xin-Yi

Presenter: LU, Peng-Cheng

Session Classification: Parallel II: B