

Observation of a family of all-charm tetraquarks with spin-2 and positive parity at CMS

Thursday, 15 May 2025 14:00 (20 minutes)

We present a comprehensive study of near-threshold structures in the $J/\psi J/\psi$ mass spectrum using the fully reconstructed $J/\psi J/\psi \rightarrow 4\mu$ final state, based on proton-proton collision data at $\sqrt{s} = 13$ and 13.6 TeV collected by the CMS experiment. With approximately four times more J/ψ pair candidates compared to the previous Run 2 dataset, the combined data sample enables a significantly enhanced sensitivity to rare structures. In the mass range between 6 and 8 GeV, three peaks are observed with significances well above 5σ , consistent with the previously reported tetraquark candidates $X(6600)$, $X(6900)$, and $X(7100)$. Two pronounced dips, also exceeding 5σ in significance, are identified between the peaks, highlighting the presence of strong interference effects. A complementary search in the $J/\psi \psi(2S) \rightarrow 4\mu$ final state reveals a consistent two-peak structure corresponding to the $X(6900)$ and $X(7100)$, with measured masses and widths compatible within uncertainties. To further investigate the nature of the observed states, a spin-parity analysis is performed using a matrix-element-based approach, testing multiple J^P hypotheses. The results favor a $J^P = 2^+$ assignment, offering new insights into the internal dynamics of these exotic resonances. This analysis, based on the Run 2 data, provides the most detailed picture to date of the fully-charm tetraquark landscape.

Primary author: ZHANG, Jingqing (Nanjing Normal University)

Presenter: ZHANG, Jingqing (Nanjing Normal University)

Session Classification: Parallel III: Hadron Spectroscopy