

Prospects of charm production at neutrino telescope

Thursday, 15 May 2025 15:55 (20 minutes)

Atmospheric neutrinos and muons, produced from cosmic-ray-induced air showers, are one of the dominant backgrounds for astrophysical neutrino detections. The flux with energy below 100 TeV is dominated by muons and conventional atmospheric neutrinos produced by pion and kaon decays. In contrast, their prompt counterparts, from decays of short-lived charm hadrons, are predicted to contribute at higher energies and exhibit a harder spectral index. A precise understanding of the prompt components is essential not only for constraining the background in astrophysical neutrino detection, but also for advancing the development of hadronic interaction models. Despite their significance, the prompt components have yet to be measured experimentally. This talk presents a review of prospects for the detection of prompt atmospheric neutrinos and muons using neutrino telescope, in particular TRIDENT, a proposed next-generation neutrino telescope. We explore the potential to refine modeling of forward charm production in hadronic interactions as well as enhancing sensitivity to astrophysical neutrino searches.

Primary author: MEI, Hualin

Presenter: MEI, Hualin

Session Classification: Parallel III: Lattice QCD