Jet Systematic Uncertainty in $H \rightarrow Z\gamma$ Analysis

Danning Liu[1], Qiuping Shen[2] [1] Tsung-Dao Lee Institute, Shanghai Jiao Tong University [2] IHEP, CAS

Outline

- The presentation is structured as follows :
 - Jet systematic estimation method
 - Current jet systematic estimation results
 - Comparison between Run2 and Run3
 - Prunning strategy
 - Prunning results
 - Summary and Next to-do lists

Method on Jet Systematic Estimation

- We first took ggF channel as the first step to investigate the estimation procedure
- Ntuple cross-checks
 - Event yields compared in each categories
 - Nominal yields in nominal sample (produced by Mingxu : /eos/atlas/atlascerngroupdisk/physhigp/PHOTON/HZG/Run3/ProcessedSample/H2Zy-Run3-v3)
 - Nominal yields in systematic samples (produced by Zijiang : /eos/user/z/zijiangw/Zy_Run3/package_syst/sample)
 - Event yields are normalized to cross-section [fb]

c23a	ggH	category	nominal	systematic
		1	0.058844382568763745	0.058844382568763745
		2	0.23593365966757246	0.23593365966757246
		3	0.963957422813774	0.963957422813774
		4	1.176787932494392	1.176787932494392
		5	1.2966969946983566	1.2966969946983566
		6	1.7389188755051084	1.7389188755051084
		7	5.981597648627854	5.981597648627854
		8	9.592929987666396	9.592929987666396
		9	0.8166484971093504	0.8166484971093504
		10	3.82704378327212	3.82704378327212
		11	10.861606532318614	10.861606532318614

Perfect agreement observed ! Ready to extract systematics

Method on Jet Systematic Estimation

- Configurations :
 - Campaigns : mc23a + mc23d
 - Categories : 11
 - Selections : Category_Run3 == xx && Ilg_passallcuts == 1
- How to derive systematic uncertainty ?
 - First calculate nominal yields from HZG_Tree
 - Then calculate variation yields (up, down) from HZG_Tree_JET_xxx_Systematic
 - The relative difference is calculated in percentage and assigned as up/down uncertainty

Yields=mc_weight_final*xs*lumi / sumofweights

Different sumofweights are calculated for nominal and variations

Systematic uncertainty = $\frac{\text{Yields}(\pm 1\sigma)}{\text{Yields}(\text{nominal})} - 1$

Brief recap on category definition

- Overview of Run3 categorization
 - 11 categories defined in this analysis

12/25/2024

12/25/2024

- A quick summary of dominant jet systematic sources
 - JET_Flavor_Composition
 - JET_Flavor_Response
 - JET_JESUnc_VertexingAlg_PreRec
 - JET_JESUnc_Noise_PreRec
 - JET_Pileup_OffsetMu
 - JET_Pileup_RhoTopology
 - JET_EtaIntercalibration_NonClosure_0p2_PreRec
 - JET_EtaIntercalibration_Modelling
 - JET_EtaIntercalibration_TotalStat

Comparision between Run2 and Run3

- Comparison motivation:
 - To check the robustness of estimation method
 - To findout large deviation and treatment

• Most sensitive categories in Run2

12/25/2024

Comparison between Run2 and Run3

- In order to reach a comparable results, same sources of jet systematic are considered in this comparison
 - Figure 1: Comparing VBF-topo category in Run2 with Category 1+2 in Run3
 - Figure 2: Comparing High-pT category in Run2 with Category 4+8 in Run3

List of different jet systematic sources

• Differences in jet systematic sources are summarized here :

	Only used in R	un 2	Only used in Run 3	
Systematic	JET_EffectiveNP_1	JET_JER_EffectiveNP_1	JET_EffectiveNP_Detector_1	JET_EffectiveNP_Statistical3
	JET_EffectiveNP_2	JET_JER_EffectiveNP_2	JET_EffectiveNP_Detector_2	JET_EffectiveNP_Statistical4
	JET_EffectiveNP_3	JET_JER_EffectiveNP_3	JET_EffectiveNP_Mixed1	JET_EffectiveNP_Statistical5
	JET_EffectiveNP_4	JET_JER_EffectiveNP_4	JET_EffectiveNP_Mixed2	JET_EffectiveNP_Statistical6
	JET_EffectiveNP_5	JET_JER_EffectiveNP_5	JET_EffectiveNP_Mixed3	JET_EtaIntercalibration_NonClo sure_0p2_PreRec
	JET_EffectiveNP_6	JET_JER_EffectiveNP_6	JET_EffectiveNP_Modelling1	
Source	JET_EffectiveNP_7	JET_JER_EffectiveNP_7restTer m	JET_EffectiveNP_Modelling2	JET_InSitu_NonClosure_PreRe c
	JET_EffectiveNP_8restTerm	JET_JvtEfficiency	JET_EffectiveNP_Modelling3	JET_JERUnc_Noise_RreRec
	JET_EtaIntercalibration_NonClosure_highE	JET_Pileup_OffsetNPV	JET_EffectiveNP_Modelling4	JET_JESUnc_VertexingAlg_Pre Rec
	JET_EtaIntercalibration_NonClosure_negEta		JET_EffectiveNP_Statistical1	JET_JESUnc_Noise_PreRec
	JET_EtaIntercalibration_NonClosure_posEta		JET_EffectiveNP_Statistical2	JET_NNJvtEfficiency

• JER systematics are missing in Run3 Ntuple production, please check !

Summary and Next todos

- Summary
 - Start from ggF sample
 - Done to prepare the output for the workspace

- Envelope has been taken (in between variation and nominal yields) and assigned as uncertainties
- First jet systematic estimations in 11 categories are derived
- Comparisons between Run2 and Run3 estimation have been performed in VBF-topo and high relative pT categories, with generally good agreement observed
- Next todos
 - More samples (including VBFH, VH, ggZH and etc.) will be checked in the next week
 - Should we use prunning ?