SUSY Models

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

The Second TDLi Mini-Workshop on New Physics at the Tera Scale, August 3-5, 2019

イロト イヨト イヨト イヨト

æ

- The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2020), July 27-31, 2020, China National Convention Center, Beijing, P. R. China
- Pre-SUSY 2020, July 20-24, 2020, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, P. R. China

Motivation for New Physics beyong the Standard Model

The convincing evidence

Dark energy; dark matter; neutrino masses and mixing; baryon asymmetry; inflation; ...

Fine-tuning problems

cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...

Aesthetic problems

Interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters;

...

The electroweak vacuum stability problem

The stability problem can be easily solved in the new physics models.

- New Physics beyond the SM!
- Question: why do we still believe in supersymmetry?

- B physics anomalies?
- ► The muon and electron anomalous magnetic moments
- MiniBoone experiment?
- ► ANITA experiment?
- H_0 tension
- ▶ ...

They might be time dependent and might be gone with the wind in the near future?

< ≣⇒

- Generalization of the Poincare Algebra; The most general symmetry of the S-matrix; The local supersymmetry includes gravity naturally, *i.e.*, supergravity, etc.
- Supersymmetry provides a natural solution to the gauge hiearchy problem.
- Supersymmetry partially solves the cosmological constant problem: $M_{\rm Pl} \rightarrow M_{SUSY}$.
- Supersymmetry is a bridge between the promising low energy phenomenology and the high-energy fundamental physics such as the Grand Unified Theory and String Theory.

- Solving the gauge hierarchy problem
- Gauge coupling unification
- Radiatively electroweak symmetry breaking
- Natural dark matter candidates
- Electroweak baryogenesis
- Electroweak precision: R parity
- μ problem in the MSSM: $\mu H_d H_u$.

The Grand Unified Theories: SU(5) and SO(10)

- Unification of the gauge interactions, and unifications of the SM fermions
- Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale M_Z
- Neutrino masses and mixings by seesaw mechanism
- Prediction: dim-6 proton decay via heavy gauge boson exchange.

- Gauge symmetry breaking
- Doublet-triplet splitting problem
- Proton decay problem
- Fermion mass problem: $m_e/m_\mu = m_d/m_s$

A ■

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
- D-brane models on Type II orientifolds
- Free fermionic string model builing
- *F*-Theory Model Building

Supersymmetry is a bridge between the promising low energy phenomenology and high-energy fundamental physics.

String Theory \rightarrow String Models \rightarrow GUTs \rightarrow SSMs \rightarrow SM

< ≣ >

æ

- ► The SM-like Higgs boson mass is around 125 GeV.
- The tree-level Higgs boson mass is smaller than M_Z .
- The Higgs boson mass is enhanced by the top quarks/squarks loop corrections.
- The maximal stop mixing is needed to relax the fine-tuning.

Problem: the $SU(3)_C \times U(1)_{EM}$ symmetry breaking.

- The first two-generation squark mass low bounds are around 1.6 (1.75) TeV.
- ► The gluino mass low bound is around 2.25 (2.46) TeV.
- The stop and sbottom mass low bounds are around 1.16 (1.3) and 1.35 (1.45) TeV, respectively.

The SSMs are fine-tuned!!!

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS	Preliminary
	√s = 13 TeV

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

	Model	s	ignatur	e ∫.	Д d1 [fb ⁻	5	N	Mass limit					Reference
_		A	2.6.000	enia		I Do Ba	Press 1					ath anns a	1710 00000
	49. 9-x91	mono-jet	1-3 jets	Elim	36.1	₫ [1×, 8×	Degen]	0.43	0.9	1.50		m(k_1)<100 GeV m(k_1)+5 GeV	1711.00301
Inclusive Searches	$\tilde{g}\tilde{g}$, $\tilde{g} \rightarrow q \tilde{q} \tilde{\ell}_{1}^{0}$	0 e, µ	2-8 jets	\mathcal{E}_T^{\min}	36.1	R R			Forbidden	0.95-1	2.0	$m(\tilde{t}_{1}^{0})$ <200 GeV $m(\tilde{t}_{1}^{0})$ =900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{k}_{1}^{0}$	3 ε, μ ετ. μμ	4 jets 2 jets	E_T^{min}	36.1 36.1	8 8				1.2	1.85	m(ξ ²)<500 GeV m(ξ) m(ξ ²)>50 GeV	1706.03731 1805.11381
	$\tilde{g}_{2}^{\alpha}, \tilde{g} \rightarrow a \rho \mu W Z \tilde{\ell}_{1}^{\beta}$	0 r. µ 3 r. µ	7-11 jets 4 jets	\mathcal{E}_T^{min}	36.1 36.1	8 3			0.98		1.8	m(t ² 1) <400 GeV m(t) m(t ² 1)+200 GeV	1708.02794 1706.03731
	$gg, g \rightarrow n \tilde{\chi}_1^0$	0-1 e.p 3 e.p	3 b 4 jets	\mathcal{E}_T^{min}	79.8 36.1	8 3				1.25	2.25	m(\tilde{t}_1^0)<200 GeV m(\tilde{t}_1)=300 GeV	ATLAS-CONF-2018-041 1706.03731
squarks oduction	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1{\rightarrow}b\tilde{a}_1^0/d\tilde{a}_1^z$		Multiple Multiple Multiple		36.1 36.1 36.1	$\delta_1 \\ \delta_1 \\ \delta_1 \\ \delta_1$	Forbidde	en Forbidden Forbidden	0.9 0.58-0.82 0.7		m(m(i ²)=2	$m(\tilde{t}_1^3)$ =300 GeV, BR (\tilde{t}_1^3) =1 \tilde{t}_1^3 =300 GeV, BR (\tilde{t}_1^3) =BR (\tilde{t}_1^3) =0.5 90 GeV, $m(\tilde{t}_1^3)$ =300 GeV, BR (\tilde{t}_1^3) =1	1708.05298, 1711.03301 1708.05296 1708.03731
	$\tilde{b}_1\tilde{b}_1,\tilde{b}_1{\rightarrow}b\tilde{n}_2^0{\rightarrow}bb\tilde{t}_1^0$	0 e, µ	6 <i>b</i>	\mathcal{E}_T^{\min}	139	$\frac{\delta_1}{\delta_1}$	Forbidden	0.23-0.48	a	1.23-1.35	a	$m(\tilde{t}_{1}^{0}, \tilde{t}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{t}_{1}^{0}, \tilde{t}_{1}^{0}) = 150 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 0 \text{ GeV}$	SUSY2018-31 SUSY2018-31
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{t}_1^0$ or $t \tilde{t}_1^0$	0-2 e, µ	0-2 jets/1-2	$b E_T^{min}$	36.1	Ii -			1.0			$m(\tilde{r}_1^0){=}1GeV$	1506.00616, 1709.04183, 1711.11520
of b	ILL Location access	1 - + 1	Nultiple	pain	36.1	4 1			0.45-0.84	1.16	m(X))=1	$50 \text{ GeV}, m(t_1^*) + m(t_2^*) + 6 \text{ GeV}, i_1 \simeq i_2$ $m(t_1) + 800 \text{ GeV}$	1709.04183,1711.11525
3 rd g	hh harft / Pr rark	0 6.4	20	Ellin	36.1	2			0.05			million GeV	1805.01649
	defect out out out	0 e.p	mono-jet	E_{f}^{min}	36.1	$\frac{I_1}{I_1}$		0.46 0.43				$m(\tilde{t}_1, \tilde{x}) \cdot m(\tilde{t}_1^2) = 50 \text{ GeV}$ $m(\tilde{t}_1, \tilde{x}) \cdot m(\tilde{t}_1^2) = 5 \text{ GeV}$	1905.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	$1-2 e, \mu$	4.b	E_T^{min}	36.1	ž ₁			0.32-0.88			$\pi(\hat{k}_1^0)$:=0 GeV, $\pi(\hat{i}_1)$ - $\pi(\hat{k}_1^0)$:= 190 GeV	1708.03996
	$\tilde{x}_1^*\tilde{x}_2^0$ via WZ	2-3 e, μ er, μμ	21	E_T^{min} E_T^{min}	36.1 36.1	$\frac{\hat{x}_{1}^{0} \hat{x}_{2}^{0}}{\hat{x}_{1}^{0} \hat{x}_{2}^{0}} = 0$	3.17		0.6			$m(\tilde{r}_{1}^{2})=0$ $m(\tilde{r}_{1}^{2})=m(\tilde{r}_{1}^{2})=10$ GeV	1403.5294, 1806.02293 1712.00119
	$\hat{X}_{1}^{*}\hat{X}_{1}^{*}$ via WW	2 4, 14		E_T^{min}	139	\hat{X}_{1}^{\pm}		0.42				$m(\tilde{\kappa}_1^3) = 0$	ATLAS-CONF-2019-008
	$\hat{x}_1^{\pm} \hat{x}_2^0$ via Wh	0-1 e, p	59	E_T^{miss}	36.1	$\hat{X}_{1}^{0}/\hat{X}_{2}^{0}$			0.68			$m(\tilde{t}_{\pm}^{0})=0$	1012.09432
> 2	$\hat{X}_1 \hat{X}_1$ via $\hat{\ell}_L / P$	24,4		E_T^{min}	139	x_1^{α}			1.0			$m(\hat{r}, \hat{v}) = 0.5 (m(\hat{x}_1^+) + m(\hat{x}_1^0))$	ATLAS-CONF-2019-008
EV	$\mathcal{X}_{1}^{*}\mathcal{X}_{1}^{*}/\mathcal{X}_{2}^{*}, \mathcal{X}_{1}^{*} \rightarrow \tilde{\tau}_{1} v(\tau P), \mathcal{X}_{2}^{*} \rightarrow \tilde{\tau}_{1} \tau(v P)$	27		Equi	36.1	着房	0.22		0.76		$m(\hat{\tau}_1^{*}){\circ}m(\hat{\tau}_1^{0})$	$m(T_1)=0, m(T, 2)=0.5(m(T_1^{-})+m(T_1^{-}))$ = 100 GeV, $m(T, 2)=0.5(m(T_1^{-})+m(T_1^{-}))$	1708.07875 1708.07875
	$\tilde{t}_{L,R}\tilde{t}_{L,R}, \tilde{t} \rightarrow \ell \tilde{t}_1^{\prime}$	2 ε.μ 2 ε.μ	0 jets ≥ 1	$\mathcal{E}_T^{\rm him}$	139 36.1	1	0.18		0.7			$m(\tilde{t}_{1}^{*})=0$ $m(\tilde{t})=m(\tilde{t}_{1}^{*})=5$ GeV	ATLAS-CONF-2019-008 1712.08119
	$BB, B \rightarrow hG/ZG$	0.6,µ 4.6,µ	≥ 3 b 0 jets	\mathcal{E}_T^{mo}	36.1 36.1	Ĥ Ĥ	0.13-0.23	1.3	0.29-0.68			$BB(\mathcal{E}_1^n \rightarrow kG)=1$ $BB(\mathcal{E}_1^n \rightarrow ZG)=1$	1805.04030 1804.03902
lived	Direct $\hat{x}_1^+ \hat{x}_1^-$ prod., long-lived \hat{x}_1^+	Disapp. trk	1 jet	E_T^{min}	36.1	$\frac{\hat{x}_{1}^{a}}{\hat{x}_{1}^{b}} = 0.15$		0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
25	Stable g R-hadron		Multiple		38.1	8					2.0		1902.01636.1808.04095
30	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q_0 \tilde{\chi}_1^0$		Multiple		36.1	.k [n(k) =1	0 mi, 0.2 mi			_	2.05 2.0	n(2)=100 GeV	1710.04901,1806.04095
	LFV $pp \rightarrow \bar{v}_s + X_c \bar{v}_s \rightarrow e\mu/e\tau/\mu\tau$	egietat			3.2	9,					1.9	J ₃₁₁ =0.11, J ₁₀₂₀₀₆₂₀₀ =0.07	1607.08079
	$\hat{X}_{1}^{\pm}\hat{X}_{1}^{\pm}/\hat{X}_{2}^{0} \rightarrow WW)ZUUUrr$	4 e.p	0 jets	E_T^{min}	36.1	1. 18 Ho	a # 0, J ₁₁₁ # 0]		0.82	1.33		m(r)=100 GeV	1804.03932
÷.	$gg, g \rightarrow qq \ell_1^{\mu}, \ell_1^{\mu} \rightarrow qq q$	4	-5 large-R je Multicle	its.	36.1	1 merily	200 GeV(1100 GeV]		1.0	1.3	1.9	Large X ¹ ₁₁₂	1904.02568
ğ			Nulla		36.1	A 110-00	(a, 20-0)		1.00		2.0	m(r) =200 GeV, bino exe	ALLAS-CONF-2018-003
a.	$B_1 P \rightarrow B_1, X_1 \rightarrow BS$ $\overline{D}\overline{D}_1 \overline{D}_2 \rightarrow BS$		2 ints + 2 0		36.7	J. Inc. but		0.42	0.61			m(x) a200 GeV, bino-like	1710 07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow al$	25.4	24		36.1	ī.				0.4-1.45		BP(7,-shr/hat>20%	1710.05544
		1 //	DV		138	T ₁ [1e-104	1.2 ₂₄ <10-8, 36-10<.	X_14 <30-0]	1.0	1.	6	BR(7,-+qu)=100%, cos8(=1	ATLAS-CONF-2019-005
*Only a selection of the available mass limits on new states or 10 ⁻¹ 1 Mass scale [TeV]													

"Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

イロト イポト イヨト イヨト 一日

Supersymmetry at the Current and Future Colliders

- The wrong impression is that supersymmetry was excluded at the LHC?
- Can we rule out supersymmetry at the LHC, VLHC, FCC_{hh} and SppC?
 No! No!! No!!!
- Points: supersymmetry breaking soft mass scale can be pushed to be much higher than 1 TeV, while gauge coupling unification can still be realized due to the logarithmic RGE running and threshold corrections around the GUT scale.
- Conclusion: supersymmetry will definitely not die in the near future!!!

The interesting question: can we rule out the natural supersymmetry at the FCC_{hh} and SppC? Or can we solve the supersymmetry electroweak fine-tuning problem?

* 注 * 二 注

Classifications of SUSY Models: Particle Content

The Minimal Supersymmetric Standard Model (MSSM)

Two Higgs doublets due to anomaly cancellations and holomorphic superpotential.

► The Next-to-MSSM (NMSSM): S and Z₃.

Lifting Higgs boson mass, and solution to the μ problem.

- The SSMs with Dirac gauginos ¹ or a pseudo-Dirac gluino ² Supersoft supersymmetry.
- ▶ New gauge symmetries: SUSY U(1)' Model ³, etc.

Lifting Higgs boson mass, and solution to the μ problem.

Vector-like particles ⁴

Lifting Higgs boson mass, dim-6 proton decay, and string-scale gauge coupling unification, etc.

¹P. J. Fox, A. E. Nelson and N. Weiner, JHEP **0208**, 035 (2002); G. D. Kribs and A. Martin, Phys. Rev. D **85**, 115014 (2012).

²R. Ding, T. Li, F. Staub, C. Tian and B. Zhu, Phys. Rev. D 92, no. 1, 015008 (2015).

³J. Erler, P. Langacker and T. Li, Phys. Rev. D **66**, 015002 (2002).

⁴ J. Jiang, T. Li and D. V. Nanopoulos, Nucl. Phys. B **772**, 49 (2007) [hep=ph/061@054].

SUSY Breaking Soft Terms

• The mSUGRA/CMSSM: $M_{1/2}$, M_0 , A_0 , tan β , and sign(μ).

The mSUGRA has $B = A - M_0$; NUHM1 with $m_{H_u}^2 = M_{H_d}^2 \neq M_0^2$; NUHM2 with $M_{H_u}^2$ and $M_{H_d}^2$. • GmSUGRA ⁵

 M_1 , M_2 , M_0 , $M_{\tilde{L}}$, $M_{\tilde{E}^c}$, M_{H_u} , M_{H_d} , A_U , A_D , A_E , tan β , and sign(μ).

The phenomenological MSSM (pMSSM) ⁶

19 low energy parameters: all the parameters relevant for collider physics, and a more general description

of the parameter space.

String models

No-scale supergravity ⁷; M-theory on S^1/Z_2 ; Intersecting D-brane models, etc.

Split SUSY ⁸

Universal high-scale SUSY ⁹

⁵TL and Nanopoulos, 2010; Balazs, TL, Nanopoulos and Wang, 2010.

⁶Berger, Gainer, Hewett and Rizzo, 2009.

⁷ E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B 133, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. 145, 1 (1987).

⁸Wells, 2003/2004; Arkani-Hamed and Dimopoulos, 2004; Giudice and Romanino, 2004.

⁹V. Barger, C. W. Chiang, J. Jiang and T. Li, Nucl. Phys. B **705**, 71 (2005) [hep-ph/0410252]; V. Barger, J. Jiang, P. Langacker and T. Li, Phys. Lett. B **624**, 233 (2005) [hep-ph/0503226]; V. Barger, J. Jiang, P. Langacker and T. Li, Nucl. Phys. B **726**, 149 (2005) [hep-ph/0504093]; L. J. Hall and Y. Nomura, JHEP **1003**, 076 (2010) [arXiv:0910.2235 [hep-ph]].

The interesting question: can we rule out the natural supersymmetry at the FCC_{hh} and SppC? Or can we solve the supersymmetry electroweak fine-tuning problem?

< ≣ >

Fine-Tuning Definition I

Electroweak symmetry breaking condition

$$\mu^2 + \frac{1}{2}M_Z^2 = \frac{\overline{m}_{H_d}^2 - \overline{m}_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1}$$

Fine-tuning Definition I ¹⁰: the quantitative measure Δ^{EENZ-BG}_{FT} for fine-tuning is the maximum of the logarithmic derivative of M_Z with respect to all the fundamental parameters a_i at the GUT scale

$$\Delta_{\mathrm{FT}}^{\mathrm{EENZ-BG}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\} \ , \ \ \ \Delta_i^{\mathrm{GUT}} = \left|rac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}
ight| \ .$$

.

¹⁰ J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. A **1**, 57 (1986); R. Barbieri and G. F. Giudice, Nucl. Phys. B **306**, 63 (1988).

Fine-Tuning Definition II

Higgs potential:

$$V = \overline{m}_h^2 |h|^2 + \frac{\lambda_h}{4} |h|^4 .$$

Higgs boson mass

$$m_h^2 = -2\overline{m}_h^2 \;,\;\; \overline{m}_h^2 \;\;\simeq\;\; |\mu|^2 + m_{H_u}^2|_{
m tree} + m_{H_u}^2|_{
m rad} \;.$$

The fine-tuning measure ¹¹:

$$\Delta_{
m FT} \equiv rac{2 \delta \overline{m}_h^2}{m_h^2} \; .$$

¹¹ R. Kitano and Y. Nomura, Phys. Lett. B **631**, 58 (2005) [hep-ph/0509039]; Phys. Rev. D **73**, 095004 (2006) [hep-ph/0602096].

Fine-Tuning Definition II: Natural Supersymmetry ¹³

- The first two generation squarks can be very heavy: no effects on fine-tuning.
- ► The light Higgsino: the μ term or effective μ term is smaller than 400 GeV.
- The squar root $M_{\tilde{t}} \equiv \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}$ of the sum of the two stop mass squares is smaller than 1.2 TeV. The left-handed sbottom should be light as well.
- ► The gluino mass is lighter than 1.5 TeV.

Comment: these bounds can be relaxed a little bit if we do the precise calculations and consider low mediation scale ¹².

¹³S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen,

D. B. Kaplan and A. E. Nelson, Phys. Lett. B 388, 588 (1996) [hep-ph/9607394].

¹²M. R. Buckley, A. Monteux and D. Shih, JHEP **1706**, 103 (2017) [arXiv:1611.05873 [hep-ph]].

Fine-Tuning Definition III

 The minimization condition for electroweak symmetry breaking

$$rac{M_Z^2}{2} = rac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2eta}{ an^2eta - 1} - \mu^2 \; .$$

The fine-tuning measure ¹⁴

$$\Delta_{\mathrm{FT}} \equiv \mathrm{Max}\{rac{2C_i}{M_Z^2}\} \; .$$

The HS fine-tuning measure ¹⁵

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2(\Lambda) + \delta m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2(\Lambda) + \delta m_{H_u}^2 + \Sigma_u^u) \tan^2\beta}{\tan^2\beta - 1} - (\mu^2(\Lambda) + \delta\mu^2) \; .$$

¹⁴ H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D 87, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

¹⁵H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 3, 035017 (2013) [arXiv:1210.3019 [hep-ph]].

- The first two generation squarks can be heavy.
- The gluino and stop can be heavy as well.
- The Higgsino are light.

The LHC searches: Higgsinos.

¹⁶ H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

- Fine-Tuning Definition III is weak.
- ► Fine-Tuning Definition II is smilar to III.
- Fine-Tuning Definition I is strong.
- ► We shall focus on Fine-Tuning Definition I, *i.e.*, the EENZ-BG fine-tuning measure.
- ► The other reason is that we have a big particle physics paradiagm:
 String Theory → String Models → GUTs → SSMs →

String Theory \rightarrow String Models \rightarrow GUTs \rightarrow SSMs \rightarrow SM

- Natural supersymmetry ¹⁷.
- The SSMs which can escape/relax the missing energy constraints: *R* parity violation ¹⁸; compressed supersymmetry ¹⁹; stealth supersymmetry ²⁰; etc.

- ¹⁷S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen,
 D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/9607394].
- ¹⁸ R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet and S. Lavignac *et al.*, Phys. Rept. **420**, 1 (2005) [hep-ph/0406039].
- ¹⁹T. J. LeCompte and S. P. Martin, Phys. Rev. D 84, 015004 (2011) [arXiv:1105.4304 [hep-ph]]; Phys. Rev. D 85, 035023 (2012) [arXiv:1111.6897 [hep-ph]].

²⁰ J. Fan, M. Reece and J. T. Ruderman, JHEP **1111**, 012 (2011) [arXiv:1105.5135 [hep-ph]]; arXiv:1201.4875 [hep-ph]. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Supersymmetric Standard Models (SSMs)

- The SSMs which can decrease the production cross sections: supersoft supersymmetry ²¹.
- Displaced Supersymmetry ²².
- Double Invisible Supersymmetry ²³.
- Radiative Natural Supersymmetry ²⁴.

²¹G. D. Kribs and A. Martin, arXiv:1203.4821 [hep-ph], and references therein.

²² P. W. Graham, D. E. Kaplan, S. Rajendran and P. Saraswat, JHEP **1207**, 149 (2012) [arXiv:1204.6038 [hep-ph]].

²³ J. Guo, Z. Kang, J. Li, T. Li and Y. Liu, arXiv:1312.2821 [hep-ph]; D. S. M. Alves, J. Liu and N. Weiner, arXiv:1312.4965 [hep-ph].

²⁴ H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D 87, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

Supersymmetric Standard Models (SSMs)

- Maximally Natural Supersymmetry ²⁵.
- Super-Natural Supersymmetry ²⁶.
- Folded Supersymmetry (neutral naturalness) ²⁷.

The top quark partner is charged under another SU(3) but not $SU(3)_C$, so its production cross section is

highly suppressed.

▶ Relaxation mechanism ²⁸ and Relaxing Split SUSY ²⁹

²⁷ G. Burdman, Z. Chacko, H. S. Goh and R. Harnik, JHEP 0702, 009 (2007) [hep-ph/0609152]; N. Craig, S. Knapen and P. Longhi, Phys. Rev. Lett. 114, no. 6, 061803 (2015) [arXiv:1410.6808 [hep-ph]].

²⁸ P. W. Graham, D. E. Kaplan and S. Rajendran, Phys. Rev. Lett. **115**, no. 22, 221801 (2015) [arXiv:1504.07551 [hep-ph]].

²⁹B. Batell, G. F. Giudice and M. McCullough, JHEP **1512**, 162 (2015) doi:10.1007/JHEP12(2015)162 [arXiv:1509.00834 [hep-ph]].

²⁵S. Dimopoulos, K. Howe and J. March-Russell, Phys. Rev. Lett. **113**, 111802 (2014) [arXiv:1404.7554 [hep-ph]].

²⁰ T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B **740**, 66 (2015) [arXiv:1408.4459 [hep-ph]]; G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D **92**, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]]; T. Li, S. Raza and X. C. Wang, Phys. Rev. D **93**, no. 11, 115014 (2016) [arXiv:1510.06851 [hep-ph]].

Can we propose a supersymmetry scenario whose the EENZ-BG fine-tuning measure is automatically 1 or order 1 (O(1))?

Fundamental physics principles: simplicity and naturalness.

Fine-Tuning Definition:

$$\Delta_{\text{FT}} = \text{Max}\{\Delta_i^{\text{GUT}}\}, \quad \Delta_i^{\text{GUT}} = \left|\frac{\partial \ln(M_Z)}{\partial \ln(a_i^{\text{GUT}})}\right|$$

Natural Solution:

$$M_Z^n = f_n\left(\frac{M_Z}{M_*}\right) M_*^n .$$

$$\frac{\partial \ln(M_Z^n)}{\partial \ln(M_*^n)} \simeq \frac{M_*^n}{M_Z^n} \frac{\partial M_Z^n}{\partial M_*^n} \simeq \frac{1}{f_n} f_n \simeq \mathcal{O}(1) \ .$$

For no-scale supergravity and M-theory on S^1/Z_2 , we have $M_* = M_{1/2}$ and $M_* = M_{3/2}$, respectively.

³⁰T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]]; G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D 92, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]]; T. Li, S. Raza and X. C. Wang, Phys. Rev. D 93, no. 11, 115014 (2016) [arXiv:1510.06851 [hep-ph]].

Supernatural Supersymmetry

 The F - SU(5) ³¹ and the MSSM ³² with no-scale supergravity ³³ and Giudice-Masiero Mechanism ³⁴.

No-scale Supergravity: $M_{1/2} \neq 0$, and $M_0 = A_0 = B_{\mu} = 0$.

Giudice-Masiero Mechanism: generating μ term from supersymmetry breaking effect, i.e., $\mu \propto M_{1/2}$.

Prolem: we cannot predict the exact mass ratio $\mu/M_{1/2}$?

 The NMSSM ³⁵ with supersymmetry breaking soft terms from M-theory on S¹/Z₂ ³⁶.

The NMSSM: an singlet S, and a discrete Z_3 symmetry.

³²G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D 92, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]].

³³E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B **133**, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. **145**, 1 (1987).

³⁴G. F. Giudice and A. Masiero, Phys. Lett. B **206**, 480 (1988).

³⁵T. Li, S. Raza and X. C. Wang, Phys. Rev. D **93**, no. 11, 115014 (2016) [arXiv:1510.06851 [hep-ph]].

³⁶T. Li, Phys. Rev. D **59**, 107902 (1999) [hep-ph/9804243].

・ロト ・回ト ・ヨト ・ヨト

2

³¹ T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]].

- The Flipped SU(5) model with TeV-scale vector-like particles.
- These models can be constructed in the heterotic string string theory, M-theory on S¹/Z₂, free fermionic string constructions, and F-theory model building.
- String-scale gauge coupling unification; Dimension-six proton decay; Lifting the lightest CP-even Higgs boson mass; Special sparticle spectra.
- Natural solution ³⁷

$$\mu\simeq M_{1/2}$$
 .

³⁷ T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep=ph]. 4 🗄 🛌 🚊 🔊 ۹. 🖓

<ロ> (四) (四) (三) (三) (三)

- ▶ Question: we cannot obtain the exact mass ratio $\mu/M_{1/2}$ from the GM mechanism.
- ► The NMSSM with an singlet *S* and *Z*₃ symmetry is scale invariant.
- M-theory supergravity: non-zero M_0 and A_0 ³⁸.
- Consistent with all the current experiments.

³⁸T. Li, Phys. Rev. D **59**, 107902 (1999) [hep-ph/9804243].

³⁹T. Li, S. Raza and X. C. Wang, Phys. Rev. D 93, no. 11, 115014 (2016) arXiv:1510.06851 [hep-ph].

- The Kähler potential and superpotential can be calculated in principle or at least inspired from a fundamental theory such as string theory with suitable compactifications. In other words, one cannot add arbitrary high-dimensional terms in the Kähler potential and superpotential.
- There is one and only one chiral superfield or modulus whose F-term breaks supersymmetry. And all the supersymmetry breaking soft terms are obtained from the above Kähler potential and superpotential.
- All the other mass parameters, if there exist such as the µ term in the MSSM, must arise from supersymmetry breaking.

There exist the correlations among the GUT-scale parameters with large fine-tuning measures 40 .

No-scale supergravity

The Bino LSP and the right-handed sleptons are light, the natural LSP-stau coanihilation.

• M-theory on S^1/Z_2

The LSP-stau coanihilation, and Higgs resonance.

The LHC searches: Bino and right-handed sleptons.

⁴¹T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]]; G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D 92, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]]; T. Li, S. Raza and X. C. Wang, Phys. Rev. D 93, no. 11, 115014 (2016) [arXiv:1510.06851 [hep-ph]]. ・ 同 ト ・ ヨ ト ・ ヨ ト 3

- The SUSY electroweak fine-tuning problem can be solved by the super-natural supersymmetry or effective super-natural supersymmetry.
- Is there an upper bound on the sparticle mass?
- What is the implication from the grand unified theory or string theory?
- Split SUSY and Universal High-Scale SUSY.

- ► The gauginos and Higgsinos are light around the TeV scale.
- The scalar particles are heavy except one light SM Higgs particle.
- Gauge coupling unification and dark matter.
- ► The tree-level Higgs quartic coupling is defined at the SUSY breaking scale M_S is

$$\lambda(M_S) = rac{g_Y^2 + g_2^2(M_S)}{4} \cos 2eta \ , \quad {
m where} \ g_Y^2 \ = \ rac{3}{5} g_1^2 \ .$$

⁴² J. D. Wells, Phys. Rev. D **71**, 015013 (2005) [hep-ph/0411041]; N. Arkani-Hamed and S. Dimopoulos, JHEP **0506**, 073 (2005) [hep-th/0405159]; G. F. Giudice and A. Romanino, Nucl. Phys. B **699**, 65 (2004) Erratum: [Nucl. Phys. B **706**, 487 (2005)] [hep-ph/0406088].

The Predicted Higgs Boson Mass m_h versus M_S

A ■

3

- For m_h from 123 GeV to 127 GeV, the corresponding upper bound on M_S is from 10^{5.2} GeV to 10^{6.2} GeV for tan $\beta = 2$.
- ▶ For tan $\beta = 50$, we have M_S ranges from $10^{3.6}$ to $10^{4.2}$ GeV. In particular, $M_S \lesssim 10^{4.5}$ GeV for tan $\beta \gtrsim 4$.
- ▶ In short, for tan $\beta \gtrsim 2$ and 4, we have $M_S \lesssim 10^{6.2}$ GeV and $M_S \lesssim 10^{4.5}$ GeV, respectively.

⁴³ W. Ahmed, A. Mansha, T. Li, S. Raza, J. Roy and F. Z. Xu, arXiv:1901.05278 [hep-ph]. 🖹 🕨 🛓 🔊 🤉 🔗

The Electroweak Vacuum Stability Bound

イロン イヨン イヨン イヨン

Э

The Numerical Results from the Electroweak Vacuum Stability Bound ⁴⁴

- For $m_h = 123$ GeV, we obtain $M_S \le 10^{6.1}$ GeV.
- For $m_h = 125$ GeV, we obtain $M_S \le 10^{6.8}$ GeV.
- For $m_h = 127$ GeV, we obtain $M_S \le 10^{7.3}$ GeV.
- The key point is the extra contributions to the Renormalization Group Equation (RGE) running from the couplings among Higgs boson, Higgsinos, and gauginos.

The PeV-Scale Split SUSY.

⁴⁴W. Ahmed, A. Mansha, T. Li, S. Raza, J. Roy and F. Z. Xu, arXiv:1901.05278 [hep-ph]. 🖹 🕨 🗧 🔊 🤉 🖓

The Universal High-Scale SUSY ⁴⁶

- All the sparticles are heavy, and the LSP can still be the dark matter ⁴⁵.
- ► There is one and only one light SM-like Higgs field .
- Principle: gauge coupling unification within 3% uncertainty

$$\alpha_{\rm GUT}^{-1} \equiv \alpha_1^{-1} = \frac{\alpha_2^{-1} + \alpha_3^{-1}}{2}$$

• Proton decay constraint: $M_{\rm GUT} \ge 1.0 \times 10^{16} {
m GeV}$.

$$\begin{split} \tau_{p}(e^{+}\pi^{0}) &\simeq 1.0 \times 10^{34} \times \left(\frac{2.5}{A_{R}}\right)^{2} \times \left(\frac{0.04}{\alpha_{\rm GUT}}\right)^{2} \\ &\times \left(\frac{M_{\rm GUT}}{1.0 \times 10^{16} \; {\rm GeV}}\right)^{4} \; {\rm years} \end{split}$$

⁴⁵W. Ahmed, TL, S. Raza, and H. Zhou, in preparation.

⁴⁶V. Barger, C. W. Chiang, J. Jiang and T. Li, Nucl. Phys. B **705**, 71 (2005) [hep-ph/0410252]; V. Barger, J. Jiang, P. Langacker and T. Li, Phys. Lett. B **624**, 233 (2005) [hep-ph/0503226]; V. Barger, J. Jiang, P. Langacker and T. Li, Nucl. Phys. B **726**, 149 (2005) [hep-ph/0504093]; L. J. Hall and Y. Nomura, JHEP **1003**, 076 (2010) [arXiv:0910.2235 [hep-ph]].

The Universal High-Scale SUSY

Prediction: $M_S \leq 1.46 \times 10^4$ GeV!

Image: A math the second se

< ∃⇒

э

The Universal High-Scale SUSY

・ロト ・回ト ・ヨト

< ≣ >

æ

The Numerical Results from the Higgs Mass Bound for $m_h = 127$ GeV

- For tan $\beta = 2$, we obtain $M_S \leq 10^{6.57}$ GeV.
- For tan $\beta = 5$, we obtain $M_S \le 10^{4.9}$ GeV.
- For tan $\beta = 50$, we obtain $M_S \le 10^{4.5}$ GeV.

The mSUGRA/CMSSM

Tianjun Li ITP-CAS

æ

The mSUGRA/CMSSM

Tianjun Li ITP-CAS

・ロン ・回 と ・ ヨン ・ ヨン

æ

- The ISAJET can still work for (mildly) high-scale supersymmetry breaking soft mass terms.
- We find that M₀ can be large up to 66 TeV, while gaugino mass and μ term are smaller than 8 and 30 TeV, respectively.

- Supersymmetry is well motivated from theoretical and phenomenological points of view.
- The supersymmetry electroweak fine-tuning problem can be solved elegantly in (or effective) super-natural supersymmetry.
- We obtain the mildly split SUSY and universal high-scale SUSY from the Higgs boson mass, gauge coupling unifcation, and proton decay, etc.

Thank You Very Much for Your Attention!

