Neutrino mass models based on symmetries

Gui-Jun Ding

University of Science and Technology of China

The 2nd TDLI Mini-Workshop on "New Physics at the Tera Scale", SJTU, August 5th, 2019

果欢道研究员

111 - 15 Pag 592 18 11 1 4 19

Fermion masses in SM

One big open question: why the neutrino masses are so tiny ?What is the origin of the observed neutrinos masses?

Seesaw mechanism

 \succ Adding right-handed neutrinos v_R which are SM singlets

$$\mathcal{L}_{mass}^{\nu} = -\frac{1}{2} \left[\left(\overline{\nu}_L, \overline{\nu_R^c} \right) \begin{pmatrix} 0 & m_D \\ m_D^T & M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} \right] + h.c.$$

In the seesaw limit $M >> m_D$

$$m_{\nu} = -m_D M^{-1} m_D^T$$

[Minkowski(1977); Yanagida(1979); Glashow (1979); Gell-Mann, Ramond, Slansky(1979); Mohapatra, Senjanovic(1980)]

The formalism is less predictive in general

 $m_{D} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix}, \quad M = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$

of parameters: $2 \times 9 - 3 + 3 = 18$

[Frampton,Glashow, Yanagida,hepph/0208157]

$$m_{D} = \begin{pmatrix} \times & \times \\ \times & \times \\ \times & \times \end{pmatrix}, \qquad m_{N} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix}$$

$$2 \times 6 - 3 + 2 = 11$$

Littlest seesaw

 m_a and m_s are fixed by the neutrino mass squared differences.

A model building paradigm: Tri-direct CP approach

General results of Tri-direct CP approach

Vacuum alignment constrained by residual symmetry

$$g_{\text{atm}} \langle \Phi_{\text{atm}} \rangle = \langle \Phi_{\text{atm}} \rangle, \quad g_{\text{atm}} \in G_{\text{atm}}$$
$$X_{\text{atm}} \langle \Phi_{\text{atm}} \rangle^* = \langle \Phi_{\text{atm}} \rangle, \quad X_{\text{atm}} \in H_{\text{atm}}^{CP}$$

[Ding,King,Li, 1807.07538]

Similar condition for solar neutrino sector.

Light neutrino mass matrix

$$m_{\nu} = -\frac{y_{\rm atm}^2}{x_{\rm atm}} \frac{\langle \Phi_{\rm atm} \rangle \langle \Phi_{\rm atm} \rangle^T}{\langle \xi_{\rm atm} \rangle} - \frac{y_{\rm sol}^2}{x_{\rm sol}} \frac{\langle \Phi_{\rm sol} \rangle \langle \Phi_{\rm sol} \rangle^T}{\langle \xi_{\rm sol} \rangle}$$

One column of the mixing matrix is fixed

$$m_{\nu} \left[\langle \Phi_{\rm atm} \rangle \times \langle \Phi_{\rm sol} \rangle \right] = (0, 0, 0)^T$$

- 1st column $\langle \Phi_{atm} \rangle \times \langle \Phi_{sol} \rangle \longrightarrow m_1 = 0 \longrightarrow Normal ordering$
- 3^{rd} column $\langle \Phi_{atm} \rangle \times \langle \Phi_{sol} \rangle \longrightarrow m_3 = 0 \longrightarrow Inverted ordering_{6}$

Littlest seesaw from Tri-direct CP with S₄

Vacuum alignment

$$\langle \Phi_{\text{atm}} \rangle = v_{\text{atm}} \begin{pmatrix} 0, 1, -1 \end{pmatrix}^T, \quad \langle \Phi_{\text{sol}} \rangle = v_{\text{sol}} \begin{pmatrix} 1, x, 2-x \end{pmatrix}^T \quad x \text{ real}$$

Neutrino mass matrix

Only one phase

$$m_{\nu} = m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_{s} e^{i\eta} \begin{pmatrix} 1 & 2-x & x \\ 2-x & (2-x)^{2} & x(2-x) \\ x & x(2-x) & x^{2} \end{pmatrix}$$

TM1 mixing pattern; NO mass spectrum with m₁=0

Benchmark values

Original Littlest seesaw: $(x, \eta) = (3, 2\pi/3), (-1, -2\pi/3)$ $\longrightarrow \sin^2 \theta_{23} \approx 0.5, \quad \delta_{CP} \approx -\pi/2$

New Littlest seesaw: $(x, \eta) = (-1/2, -\pi/2)$ More close to present data!

→ $0.593 \le \sin^2 \theta_{23} \le 0.609$, $-0.358\pi \le \delta_{CP} \le -0.348\pi$ The new Littlest seesaw is **more easy** to be realized in a model. [Chen, Ding,King,Li, 1906.11414]

8

Phenomenological predictions of new Littlest seesaw

9

All possible cases derived from Tri-direct CP with S₄

NO:

	$(G_l, G_{\mathrm{atm}}, G_{\mathrm{sol}})$	$X_{\rm sol}$	$\chi^2_{ m min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta$	$_{12}\sin^2\theta_{23}$	δ_{CP}/π	β/π	$m_2(\text{meV})$	$m_3(\mathrm{meV})$	$m_{ee}(\mathrm{meV})$
N.	(Z_3^T,Z_2^U,Z_2^{SU})	1	0.754	0.0221	0.318	8 0.538	-0.447	-0.458	8.602	49.940	2.394
		U	0.754	0.0221	0.318	8 0.538	-0.447	0.957	8.602	49.940	3.765
No	$\mathcal{N}_2 (Z_3^T, Z_3^{ST}, Z_2^{SU})$	1	0.754	0.0221	0.318	8 0.538	-0.447	-0.617	8.602	49.940	2.929
^{N2}		U	0.754	0.0221	0.318	8 0.538	-0.447	-0.997	8.603	49.942	3.735
\mathcal{N}_3	(Z_3^T, Z_2^S, Z_2^{SU})	U	0.754	0.0221	0.318	8 0.537	-0.447	0.509	8.605	49.940	3.234
\mathcal{N}_4	$(Z_3^T, Z_2^{TST^2}, Z_2^U)$	1	3.957	0.0222	0.332	2 0.515	0.478	-0.0576	8.606	49.938	1.779
\mathcal{N}_5	$(K_4^{(S,U)}, Z_2^{TU}, Z_2^{TU})$	U	21.368	0.0221	0.250	6 0.417	-1	-0.0616	8.602	49.940	3.243
\mathcal{N}_6	$(Z_4^{TSU}, Z_3^T, Z_2^{SU})$	U	6.215	0.0223	0.339	9 0.509	0.487	-0.0299	8.607	49.934	1.766
Na	$(K^{(S,TST^2)}, TT, TSU)$	1	2.642	0.0221	0.32'	7 0.507	-0.490	0.806	8.604	49.940	3.740
V 7	$(\Lambda_4$, Σ_3 , Σ_2)	U	2.520	0.0221	0.32'	7 0.514	0	0	8.603	49.940	3.855
\mathcal{N}_8	$(K_4^{(S,TST^2)}, Z_2^U, Z_2^{TU})$	U	0.092	0.0221	0.306	6 0.517	0.476	-0.394	8.600	49.944	2.612

All possible cases derived from Tri-direct CP with S₄

IO:

	$(G_l, G_{\rm atm}, G_{\rm sol})$	$X_{\rm sol}$	$\chi^2_{\rm min}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{12}$	$\sin^2 \theta_{23}$	δ_{CP}/π	β/π	$m_1(\text{meV})$	$m_2(\text{meV})$	$m_{ee}(\mathrm{meV})$
\mathcal{I}_1	(Z_3^T, Z_3^{ST}, Z_2^U)	1	2.678	0.0223	0.307	0.5	-0.927	0.306	49.193	49.940	43.664
\mathcal{I}_2	$(Z_3^T, Z_2^{SU}, Z_2^{TU})$	U	2.678	0.0223	0.307	0.5	-0.676	0.848	49.193	49.940	21.169
\mathcal{I}_3	$(K_4^{(S,U)}, Z_2^{TST^2}, Z_2^U)$	1	2.678	0.0223	0.307	0.5	0.495	-0.102	49.193	49.940	47.794
		S	2.678	0.0223	0.307	0.5	-0.495	0.102	49.193	49.940	47.794
\mathcal{I}_4	$(K_4^{(S,U)}, Z_2^{TU}, Z_2^{TU})$	U	19.772	0.0224	0.256	0.582	0	0.348	49.193	49.940	42.996
\mathcal{I}_5	$(Z_3^T, Z_2^{SU}, Z_2^{SU})$	U	3.412	0.0223	0.318	0.5	0.5	0.991	49.193	49.940	17.274
\mathcal{I}_6	$(Z_3^T, Z_2^{TST^2}, Z_2^U)$	1	2.678	0.0223	0.307	0.5	-0.871	0.517	49.193	49.940	35.798
\mathcal{I}_7	(Z_3^T, Z_2^U, Z_2^{TU})	U	2.678	0.0223	0.307	0.5	0.975	-0.174	49.193	49.940	46.786
\mathcal{I}_8	$(Z_3^T, Z_2^U, Z_2^{STSU})$	U	2.678	0.0223	0.307	0.5	-0.755	0.764	49.190	49.937	24.489
\mathcal{I}_9	$(Z_3^T, Z_2^{SU}, Z_2^{STSU})$	U	2.678	0.0223	0.307	0.5	-0.953	0.249	49.193	49.940	45.209
τ	$(Z_4^{TSU},Z_2^S,Z_2^{TU})$	U	2.678	0.0223	0.307	0.5	-0.995	0.102	49.193	49.940	47.794
L_{10}		STS	2.678	0.0223	0.307	0.5	-0.995	0.102	49.193	49.940	47.794
τ_{11}	$\mathcal{I}_{11} (Z_4^{TSU}, Z_2^S, Z_2^{T^2U})$	U	2.678	0.0223	0.307	0.5	-0.869	0.550	49.193	49.940	34.361
211		ST^2S	2.678	0.0223	0.307	0.5	-0.631	-0.550	49.197	49.944	34.364
\mathcal{I}_{12}	$(Z_4^{TSU}, Z_2^U, Z_2^{TU})$	U	2.678	0.0223	0.307	0.5	-0.769	0.731	49.193	49.940	25.922
\mathcal{I}_{13}	$(Z_4^{TSU}, Z_2^{TU}, Z_2^U)$	1	2.678	0.0223	0.307	0.5	0.830	-0.639	49.193	49.940	30.200
τ.,	$(K^{(S,TST^2)}, T^T, T^SU)$	1	2.678	0.0223	0.307	0.5	0.106	0.449	49.193	49.940	38.651
214	$(\mathbf{\Lambda}_4, \mathbf{\Sigma}_3, \mathbf{\Sigma}_2)$	U	5.102	0.0221	0.307	0.606	-0.606	-0.449	49.193	49.940	38.660
\mathcal{I}_{15}	$(K_4^{(S,TST^2)}, Z_2^U, Z_2^{TU})$	U	2.678	0.0223	0.307	0.5	-0.670	-0.639	49.193	49.940	30.200
\mathcal{I}_{16}	$(K_4^{(S,U)}, Z_2^{TST^2}, Z_2^{TU})$	STS	2.678	0.0223	0.307	0.5	-0.131	-0.550	49.197	49.944	34.364
\mathcal{I}_{17}	$(K_4^{(S,U)}, Z_2^{TU}, Z_2^U)$	S	5.410	0.0222	0.307	0.477	0.912	-0.550	49.194	49.940	34.356
\mathcal{I}_{18}	$(K_4^{(S,U)}, Z_2^{TU}, Z_2^{T^2U})$	ST^2S	0.895	0.0223	0.307	0.523	0.742	-0.512	49.194	49.940	36.023

Test tri-direct CP models

Х

 η / π

r

[Ding,Li,Tang,Wang,1905.12939]

The synergy of long baseline (DUNE, T2HK) and reactor (JUNO) neutrino experiments can efficiently test the model

Modular symmetry: a new approach to flavor puzzle

Torus compactification in string theory leads to Modular Symmetery

The shape of a torus T^2 is characterized by a modulus $\tau = \frac{\omega_2}{\omega_1}$, Im $\tau > 0$

The lattice is left invariant by modular transformations

$$\tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d},$$

$$ad - bc = 1$$

 a, b, c, d integers

$$\overline{\Gamma} \cong PSL(2,Z)$$

generated by two independent lattice transformations

Crucial element: Modular forms

Modular forms are **holomorphic** functions transforming under

 $f(\gamma\tau) = (c\tau + d)^{k} f(\tau), \quad \forall \gamma \in \overline{\Gamma}(N) \qquad N: \text{ level, positive integer}$ k: modular weight, even integer $\overline{\Gamma}(N) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| \gamma \in \overline{\Gamma}, \ \gamma = I \pmod{N} \right\}$

Modular forms of weight k and level N form a linear space, they can be decomposed into irreducible representations of finite modular group ,

$$f_i(\gamma \tau) = (c\tau + d)^k \rho_{ij}(\gamma) f_j(\tau), \quad \gamma \in \overline{\Gamma}$$

ρ is unitary representation of $\Gamma_N = \overline{\Gamma} / \overline{\Gamma}(N)$

N	${\tt dim}{\mathcal M}_k(\Gamma(N))$	$\Gamma_N \equiv \overline{\Gamma} / \overline{\Gamma}(N)$	k = 2
2	$k/2+1(k{\rm even})$	S_3	2
3	k + 1	A_4	3
4	2k + 1	S_4	${f 2} \oplus {f 3}'$
5	5k + 1	A_5	$3\oplus3'\oplus5$

Extension to odd k weight modular forms [Liu,Ding,1907.01488]

[Kobayashi et al,1803.10391] [Feruglio, 1706.08749] [Petcov et al, 1812.02158] [Petcov et al, 1812.02158; Ding et al,1903.12588]

Formalism: modular invariant theory

For N=1 global SUSY, the modular invariant action $S = \int d^4x d^2\theta d^2\overline{\theta} \ K(\Phi_I, \overline{\Phi}_I, \tau, \overline{\tau}) + \int d^4x d^2\theta \ W(\Phi_I, \tau) + \text{h.c.} \qquad \text{[Ferrara et al, 1989;} \\ \text{Feruglio, 1706.08749]}$

Minimal Kahler potential

$$K = -h\ln(-i\tau + i\overline{\tau}) + \sum_{I} (-i\tau + i\overline{\tau})^{-k_{I}} |\Phi_{I}|^{2} \longrightarrow \text{ kinetic terms}$$

Modular invariant superpotential

$$W = \sum_{n} Y_{I_{1}I_{2}...I_{n}}(\tau) \Phi_{I_{1}} \Phi_{I_{2}} ... \Phi_{I_{n}}$$

 $Y_{I_1I_2...I_n}(\tau)$ are modular forms

$$\tau \rightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d},$$

$$\Phi_I \rightarrow (c\tau + d)^{-k_I} \rho_I(\gamma) \Phi_I$$

$$Y_{I_1 I_2 \dots I_n}(\tau) \rightarrow Y_{I_1 I_2 \dots I_n}(\gamma \tau) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y_{I_1 I_2 \dots I_n}(\tau)$$

Modular invariance requires

$$k_Y = k_{I_1} + k_{I_2} + \ldots + k_{I_n}$$
$$\rho_Y \otimes \rho_{I_1} \otimes \ldots \otimes \rho_{I_n} \supset 1$$

Example: a minimal model based on $\Gamma_3 = A_4$

 Γ_3 is isomorphic to A_4 , smallest non-abelian finite with 3-dimensional irreducible representation.

 \geq Three weight 2 modular forms transforming as a triplet 3 of A₄

 $Y(\tau) = (Y_1(\tau), Y_2(\tau), Y_3(\tau))^T$ **A₄ triplet** [Feruglio, 1706.08749]

Dedekind eta function: $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n), \ q \equiv e^{2\pi i \tau}$

 $Y_1(\tau) = 1 + 12q + \dots, \ Y_2(\tau) = -6q^{1/3}(1 + 7q + \dots), \ Y_3(\tau) = -18q^{2/3}(1 + 2q + \dots)$

Tensor products of $Y_{1,2,3}$ generate higher weight modular forms 16

Field content

	N^c	(e^c, μ^c, τ^c)	L	H_d	H_u
$SU(2)_L \times U(1)_Y$	(1, 0)	(1, 1)	(2, -1/2)	(2, -1/2)	(2, +1/2)
$\Gamma_3 \cong A_4$	3	$({f 1}',{f 1}',{f 1}'')$	3	1	1
k_I	1	(1, 3, 1)	1	0	0

Charged lepton mass terms

[Ding, King, Liu, 1907.11714]

$$W_{e} = \alpha e^{c} (LY)_{1''} H_{d} + \beta \mu^{c} (LY^{2})_{1''} H_{d} + \gamma \tau^{c} (LY)_{1'} H_{d}$$
$$\longrightarrow M_{e} = \begin{pmatrix} \alpha Y_{3} & \alpha Y_{2} & \alpha Y_{1} \\ \beta (Y_{2}^{2} - Y_{1}Y_{3}) & \beta (Y_{3}^{2} - Y_{1}Y_{2}) & \beta (Y_{1}^{2} - Y_{2}Y_{3}) \\ \gamma Y_{2} & \gamma Y_{1} & \gamma Y_{3} \end{pmatrix} v_{d}$$

NO flavons

The couplings α , β and γ are fixed by charged lepton masses. **Neutrino mass terms**

 $W_{v} = g_{1}((N^{c}L)_{3_{s}}Y)_{1}H_{u} + g_{2}((N^{c}L)_{3_{A}}Y)_{1}H_{u} + \Lambda(N^{c}N^{c}Y)_{1}$ $M_{D} = \begin{pmatrix} 2g_{1}Y_{1} & (-g_{1}+g_{2})Y_{3} & (-g_{1}-g_{2})Y_{2} \\ (-g_{1}-g_{2})Y_{3} & 2g_{1}Y_{2} & (-g_{1}+g_{2})Y_{1} \\ (-g_{1}+g_{2})Y_{2} & (-g_{1}-g_{2})Y_{1} & 2g_{1}Y_{3} \end{pmatrix} v_{u}, \quad M_{N} = \begin{pmatrix} 2Y_{1} & -Y_{3} & -Y_{2} \\ -Y_{3} & 2Y_{2} & -Y_{1} \\ -Y_{2} & -Y_{1} & 2Y_{2} \end{pmatrix} \Lambda$

The complex modulus τ is the only source of modular symmetry breaking, best agreement with experimental data can be achieved for

Input parameters: $< \tau >= 0.0428 + 2.105 i$, $g_2 / g_1 = 1.154e^{0.625\pi i}$

Predictions:

$$\sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{13} = 0.0224, \quad \sin^2 \theta_{23} = 0.580,$$

 $\delta_{CP} = 1.602\pi, \; \alpha_{21} = 1.992\pi, \; \alpha_{31} = 0.986\pi, \; \chi^2 = 0.0003$
 $m_1 = 0.0805 \text{eV}, \quad m_2 = 0.0810 \text{eV}, \; m_3 = 0.0949 \text{eV}$

Classification of simplest A₄ modular models

noutrino

charged lepton

$$W_e = E^c L H_d f_E(\tau)$$

$W_{u} = \int LLH_{u}H_{u}f_{W}(\tau)/\Lambda$, Weinberg oper	rator
$W_{\nu}^{r} = \left[N^{c} L H_{u} f_{D}(\tau) + \Lambda N^{c} N^{c} f_{N}(\tau), \text{ seesa} \right]$	iW

Models	mass matricos	4	modular weights					
Models	mass matrices	A_4	$k_{E_{1,2,3}^c}$	k_L	k_{N^c}			
\mathcal{A}_1	W_1, C_1	1, 1, 1	1, 3, 5	1				
\mathcal{A}_2	W_1, C_2	1', 1', 1'	1, 3, 5	1				
\mathcal{A}_3	W_1, C_3	1", 1", 1"	1, 3, 5	1				
\mathcal{A}_4	W_1, C_4	1, 1, 1'	1, 3, 1	1				
\mathcal{A}_5	\mathcal{A}_5 W_1, C_5		1, 3, 1	1				
\mathcal{A}_6	W_1, C_6	1', 1', 1	1, 3, 1	1				
\mathcal{A}_7	W_1, C_7	1'', 1'', 1	1, 3, 1	1				
\mathcal{A}_8	W_1, C_8	1'', 1'', 1'	1, 3, 1	1				
\mathcal{A}_9	W_1, C_9	1', 1', 1''	1, 3, 1	1				
\mathcal{A}_{10}	W_1, C_{10}	1, 1'', 1'	1, 1, 1	1				
$\mathcal{B}_1(\mathcal{C}_1)[\mathcal{D}_1]$	$S_1(S_2)[S_3], C_1$	1, 1, 1	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_2(\mathcal{C}_2)[\mathcal{D}_2]$	$S_1(S_2)[S_3], C_2$	1', 1', 1'	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_3(\mathcal{C}_3)[\mathcal{D}_3]$	$S_1(S_2)[S_3], C_3$	1'', 1'', 1''	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_4(\mathcal{C}_4)[\mathcal{D}_4]$	$S_1(S_2)[S_3], C_4$	1, 1, 1'	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_5(\mathcal{C}_5)[\mathcal{D}_5]$	$S_1(S_2)[S_3], C_5$	1, 1, 1''	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_6(\mathcal{C}_6)[\mathcal{D}_6]$	$S_1(S_2)[S_3], C_6$	1', 1', 1	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_7(\mathcal{C}_7)[\mathcal{D}_7]$	$S_1(S_2)[S_3], C_7$	1', 1', 1''	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_8(\mathcal{C}_8)[\mathcal{D}_8]$	$S_1(S_2)[S_3], \overline{C_8}$	$1'', 1'', \overline{1}$	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_9(\mathcal{C}_9)[\mathcal{D}_9]$	$S_1(S_2)[S_3], C_9$	$1'', 1'', \overline{1'}$	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]			
$\mathcal{B}_{10}(\mathcal{C}_{10})[\mathcal{D}_{10}]$	$S_1(S_2)[S_3], C_{10}$	1, 1'', 1'	0(3)[1], 0(3)[1], 0(3)[1]	2(-1)[1]	0(1)[1]			

40 simplest A₄ modular models without flavons

Models	NO	IO	Models	NO	IO	Models	NO	IO	Models	NO	IO
\mathcal{A}_1	×	×	\mathcal{B}_1	~	~	\mathcal{C}_1	×	×	\mathcal{D}_1	~	~
\mathcal{A}_2	×	×	\mathcal{B}_2	~	~	\mathcal{C}_2	×	×	\mathcal{D}_2	~	~
\mathcal{A}_3	×	×	\mathcal{B}_3	~	~	\mathcal{C}_3	×	×	\mathcal{D}_3	~	~
\mathcal{A}_4	×	×	\mathcal{B}_4	×	×	\mathcal{C}_4	×	×	\mathcal{D}_4	×	~
\mathcal{A}_5	×	×	\mathcal{B}_5	×	×	\mathcal{C}_5	×	×	\mathcal{D}_5	v	×
\mathcal{A}_6	×	×	\mathcal{B}_6	×	~	\mathcal{C}_6	×	×	\mathcal{D}_6	v	×
\mathcal{A}_7	×	×	\mathcal{B}_7	×	×	C_7	×	×	\mathcal{D}_7	v	~
\mathcal{A}_8	×	×	\mathcal{B}_8	×	×	\mathcal{C}_8	×	×	\mathcal{D}_8	V	~
\mathcal{A}_9	×	×	\mathcal{B}_9	~	~	\mathcal{C}_9	×	×	\mathcal{D}_9	V	~
\mathcal{A}_{10}	×	×	\mathcal{B}_{10}	× .	~	\mathcal{C}_{10}	×	×	\mathcal{D}_{10}	1	~

- ✓ 8 phenomenologically viable minimal models for both NO and IO as compared to only one D₁₀ in previous analyses
- 3 free parameters beside modulus τ for the neutrino sector (3 masses + 3 angles + 3 phases)
- ✓ Dirac CP phase δ_{CP}≈ -π/2 and large neutrino masses still allowed by data

Summary

Neutrino oscillation calls for convincing model of neutrino masses and mixings, with testable and confirmed predictions.

- The tri-direct CP approach is a predictive neutrino model building scheme. The resulting neutrino mass matrix generally only depends on four (or two) parameters. The (new) Littlest seesaw can be naturally produced.
- > Modular symmetry is a new promising approach to the fermion masses and flavor mixing puzzles. A systematic method of constructing simplest modular symmetry models is proposed, A_4 as an example for illustration.

Thank you for your attention!

Backup

The drawback of the usual flavor symmetry approach

Vacuum alignment

- ✓ extra symmetry Z_n or $U(1)_R$
- ✓ alignment of flavon VEVs?

predictability

- ✓ large number of free parameters
- ✓ complicate flavor breaking sector
- ✓ higher order corrections