Status and prospects of $\mu - \tau$ symmetry

Newton Nath

中國科學院為能物現為完所 Institute of High Energy Physics Chinese Academy of Sciences

Beijing, China,

Mini-Workshop on "New Physics at the Tera Scale" (2019)

TDLI, Shanghai

August 3 - 5

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neutrino Mass:

Tiny Neutrino mass: a long standing issue.

・ロト ・ 日 ト ・ モ ト ・ モ ト

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minkowski'77, Yanagida'79, Gell-Mann/Slansky/Ramond'79, Mohapatra/Senjanovic'80, Schecter/Valle'80

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric,ReactorSolarK2K, MINOS, T2K, etc.AcceleratorKamLAND

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• 3-mixing angles, 1 CP-phase.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric,ReactorSolarK2K, MINOS, T2K, etc.AcceleratorKamLAND

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

3-mixing angles, 1 CP-phase.
2-additional Majorana phases.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

3-mixing angles, 1 CP-phase.
2-additional Majorana phases.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3-mixing angles, 1 CP-phase.
2-additional Majorana phases.

Tri-Bi-Maximal Mixing:

Before Daya-Bay results, [PRL'13]:

$$\mathbf{U}_{\mathsf{TBM}} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/3} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/3} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

• U_{TBM} was 1st proposed by Harrison, Perkins & Scott arXiv:hep-ph/0202074, PLB530 (2002)

(日) (日) (日) (日) (日) (日) (日) (日)

►
$$U_{TBM} \Rightarrow \sin \theta_{12} = \frac{1}{\sqrt{3}} \Rightarrow$$
 'trimaximal mixing',
 $\sin \theta_{23} = \frac{1}{\sqrt{2}} \Rightarrow$ 'bimaximal mixing'
and $\theta_{13} = 0^{\circ}$.

Current Status:

	Parameter	Best fit $\pm 1\sigma$	2σ range	3σ range
	$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.55 ^{+0.20} -0.16	7.20-7.94	7.05-8.14
1	$ \Delta m_{31}^2 $ [10 ⁻³ eV ²] (NO)	2.50 ± 0.03	2.44-2.57	2.41-2.60 NO or IO 2
	$ \Delta m_{31}^2 $ [10 ⁻³ eV ²] (IO)	$2.42^{+0.03}_{-0.04}$	2.34-2.47	2.31-2.51
	$\sin^2 \theta_{12}/10^{-1}$	3.20 ^{+0.20} 0.16	2.89-3.59	2.73-3.79
	$\theta_{12}/^{\circ}$	34.5+1.2	32.5-36.8	31.5-38.0
($\sin^2 \theta_{23}/10^{-1}$ (NO)	5.47 ^{+0.20} -0.30	4.67-5.83	4.45-5.99
	$\theta_{23}/^{\circ}$	47.7+1.2	43.1-49.8	41.8-50.7
	$\sin^2 \theta_{23}/10^{-1}$ (IO)	5.51 ^{+0.18} -0.30	4.91-5.84	4.53-5.98 LO or HO ?
	$\theta_{23}/^{\circ}$	$479^{+1.0}_{-1.7}$	44.5-48.9	42.3-50.7
	$\sin^2 \theta_{13} / 10^{-2}$ (NO)	$2.160^{+0.083}_{-0.069}$	2.03-2.34	1.96-2.41
	$\theta_{13}/^{\circ}$	8.45 ^{+0.16} -0.14	8.2-8.8	8.0-8.9
	$\sin^2 \theta_{13} / 10^{-2}$ (IO)	2.220+0.074	2.07-2.36	1.99–2.44
	$\theta_{13}/^{\circ}$	8.53 ^{+0.14} -0.15	8.3-8.8	8.1-9.0
	δ/π (NO)	$1.32^{+0.21}_{-0.15}$	1.01-1.75	0.87-1.94
(δ/°	238 ⁺³⁸ -27	182-315	157-349 CPV
	δ/π (IO)	$1.56^{+0.13}_{-0.15}$	1.27-1.82	1.12-1.94
\mathbf{i}	$\delta/^{\circ}$	281+23	229-328	202-349

• At present $\theta_{13} = 0$ is excluded at more than 5σ .

de Salas, Forero, Ternes, Valle, arXiv:1708.01186, PLB782 (2018)

$\mu-\tau$ reflection symmetry

Originally proposed by Harrison & Scott, PLB547 (2002)

M_ν is unchanged under:

 $\nu_e \leftrightarrow \nu_e^c, \quad \nu_\mu \leftrightarrow \pm \nu_\tau^c \quad \nu_\tau \leftrightarrow \pm \nu_\mu^c \; .$

where,

$$M_{\nu} = \begin{pmatrix} D & A & \pm A^* \\ A & B & C \\ \pm A^* & C & B^* \end{pmatrix}; \quad \mathbf{C}, \mathbf{D} \in \mathbb{R} \And \mathbf{A}, \mathbf{B} \in \mathbb{C}.$$

M_ν can be diagonalized by

$$U = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \pm v_1^* & \pm v_2^* & \pm v_3^* \end{pmatrix} \Rightarrow |U_{\mu i}| = |U_{\tau i}|, i = 1, 2, 3$$

- 2-well known predictions: $\theta_{23} = 45^{\circ}, s_{13} \cos \delta = 0$.
- Allows non-zero θ_{13} for $\delta = \pm 90^{\circ}$ (...wow).
- Also predicts trivial Majorana phases, $\rho, \sigma = 0^{\circ}, 90^{\circ}$.

- Embedded $\mu \tau$ reflection symmetry in minimal seesaw $\Rightarrow m_{light} = 0$ (still allowed by latest data).
- **•** To address both the ν -mass & mixing patterns.
- We assume,

$$\nu_{\rm L} \rightarrow {\sf S} \nu_{\rm L}^{\rm c}, \qquad {\sf N}_{\sf R} \rightarrow {\sf S}' {\sf N}_{\sf R}^{\rm c}$$

where $\nu_L^c = C \overline{\nu_L}^T$ and $N_R^c = C \overline{N_R}^T$ and

$$\mathbf{S} = \left(\begin{array}{cc} 1 & 0 \\ 0 & S' \end{array} \right) \ , \ \ \mathbf{S}' = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \ .$$

M_D, *M_R* obey,

$$M_D = SM_D^*S', \qquad M_R = S'M_R^*S'.$$

One gets,

$$M_D = \begin{pmatrix} |b|e^{i\phi_b} & |b|e^{-i\phi_b} \\ |c|e^{i\phi_c} & |d|e^{i\phi_d} \\ |d|e^{-i\phi_d} & |c|e^{-i\phi_c} \end{pmatrix}, M_R = \begin{pmatrix} |m_{22}|e^{i\phi_m} & m_{23} \\ m_{23} & |m_{22}|e^{-i\phi_m} \end{pmatrix},$$

NN, Xing & Zhang, 1801.09931/hep-ph, EPJC 78 (2018)

In type-I seesaw,

$$-\mathbf{M}_{\nu} = \mathbf{M}_{\mathsf{D}} \mathbf{M}_{\mathsf{R}}^{-1} \mathbf{M}_{\mathsf{D}}^{\mathsf{T}} = \begin{pmatrix} A & B & B^* \\ B & C & D \\ B^* & D & C^* \end{pmatrix} \,.$$

• M_{ν} can be diagonalized by,

$$V = P_{l} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix} P_{\nu}, \quad (1)$$

where $P_l = diag(e^{i\phi_e}, e^{i\phi_\mu}, e^{i\phi_\tau})$ and $P_\nu = diag(1, e^{i\rho}, e^{i\sigma})$. • 6-predictions:

 $\phi_{\rm e} = {\bf 90^\circ}, \quad \phi_{\mu} \equiv -\phi_{\tau} = \phi, \quad \theta_{{\bf 23}} = {\bf 45^\circ}, \quad \delta = \pm {\bf 90^\circ}, \quad \rho, \ \sigma = {\bf 0} \ \ {\rm or} \ \ {\bf 90^\circ}.$

Also,

$$\tan \theta_{13} = \mp \frac{1}{\sqrt{2}} \frac{\text{Im}(C')}{\text{Im}(B')} \quad (C' = Ce^{-2i\phi}, B' = Be^{-i\phi}),$$

$$\tan 2\theta_{12} = \frac{2\sqrt{2}\cos 2\theta_{13}\text{Im}(B')}{c_{13}\left[(\text{Re}(C') - D)\cos 2\theta_{13} - (\text{Re}(C') + D)s_{13}^2 + Ac_{13}^2\right]}; \text{ for NH}$$

Excellent agreement with the latest data.

Reminder: Best-fit preferences

Looking for more realistic model

Reminder: Best-fit preferences

Looking for more realistic model

• Break $\mu - \tau$ reflection symmetry:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

RG-running

Reminder: Best-fit preferences

Looking for more realistic model

• Break $\mu - \tau$ reflection symmetry:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

RG-running or

Reminder: Best-fit preferences

Looking for more realistic model

• Break $\mu - \tau$ reflection symmetry:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

RG-running or Explicit

Recent topics: Generalized CP symmetry, Modular symmetry, Bi-large ansatze, Tri-direct CP approaches etc...

RGE effect:

REG effect works as a bridge between the high-energy predictions and the low-energy measurements.

• At the one-loop level, the energy dependence of M_{ν} is given by

$$16\pi^{2}\frac{\mathrm{d}M_{\nu}}{\mathrm{d}t} = C\left(Y_{l}^{\dagger}Y_{l}\right)^{T}M_{\nu} + CM_{\nu}\left(Y_{l}^{\dagger}Y_{l}\right) + \alpha M_{\nu} \ .$$

[Chankowski, Pluciennik, PLB316(1993)]

With

$$M^{}_{
u}(\Lambda^{}_{
m EW}) = I^{}_{lpha} I^{\dagger}_{ au} M^{}_{
u}(\Lambda^{}_{\mu au}) I^{*}_{ au} \; ,$$

where one defines $I_{ au}\simeq {
m diag}\{1,1,1-\Delta_{ au}\}$ along with

$$\mathbf{I}_{\alpha} = \exp\left(\frac{1}{16\pi^2}\int_{\ln\Lambda_{\mu\tau}}^{\ln\Lambda_{\rm EW}}\alpha~{\rm d}t\right), \qquad \quad \mathbf{\Delta}_{\tau} = \frac{\mathsf{C}}{16\pi^2}\int_{\ln\Lambda_{\rm EW}}^{\ln\Lambda_{\mu\tau}}\mathbf{y}_{\tau}^2~{\rm d}t~.$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

• RGE predictions for NO (in MSSM with $\tan \beta = 30$):

• Impact of RG running:

・ロト ・ 日 ・ ・ ヨ ・

ъ

э

• Impact of RG running:

Summarizing all explicit-breaking scenarios:

Breaking	θ'_{23}	δ'_{CP}	$\Delta \theta_{12}'$	$\Delta \theta'_{13}$	$\sum m_{\nu}$	m_{ee}
Scenarios	[deg]	[deg]	[deg]	[deg]	[eV]	$[\mathrm{meV}]$
S 1	$44.3 \rightarrow 45.7$	$-180 \rightarrow 180$	$-15 \rightarrow 10$	$-1 \rightarrow 9$	$0.0575 \rightarrow 0.061$	$1 \rightarrow 4.2$
$\mathbf{S2}$	$35 \rightarrow 46$	$-100 \rightarrow -88$	$-18 \rightarrow 1$	$-0.1 \rightarrow 1.3$	$0.057 \rightarrow 0.061$	$3 \rightarrow 4.5$
	$40 \rightarrow 45$	$-90 \rightarrow -70$	$0 \rightarrow 9$	$0 \rightarrow 1.2$	_	_
$\mathbf{S3}$	$37.5 \rightarrow 47$	$-98 \rightarrow -88$	$2 \rightarrow 7$	$-1.4 \rightarrow 0.2$	$0.057 \rightarrow 0.0615$	$3 \rightarrow 4.5$
	$46 \rightarrow 47$	$-94 \rightarrow -56$	$-20 \rightarrow 3$	$-1.7 \rightarrow 0.3$	—	—
$\mathbf{S4}$	$43 \rightarrow 46$	$-100 \rightarrow -88$	$-0.2 \rightarrow 0.7$	$-3 \rightarrow 1$	$0.0575 \rightarrow 0.061$	$3.1 \rightarrow 4.4$
$\mathbf{S5}$	$39 \rightarrow 46.5$	$-120 \rightarrow -84$	$-1 \rightarrow 2.6$	$-8 \rightarrow 8$	$0.057 \rightarrow 0.061$	$3 \rightarrow 4.5$

Scenarios $\Rightarrow M_D(12) \rightarrow S1$, $M_D(22) \rightarrow S2$, $M_D(32) \rightarrow S3$, $M_R(22) \rightarrow S4$, $M_R(12) \rightarrow S5$

NN, Xing & Zhang, EPJC78 (2018)

Minimal seesaw @ TeV Scale:

Xing & Zhou, PLB '07

- ▶ 2- N_R with highly degenerate masses of O(1) TeV are added.
- Along with ν-oscillation parameters, it also explains baryon number asymmetry through "resonant leptogenesis". [Pilaftsis, Underwood '04]
- *M_D* has been parameterized as,

under anna Martina

$$M_D = V_0 egin{pmatrix} 0 & 0 \ x & 0 \ 0 & x \end{pmatrix} U$$
; (M₁, M_R are diag).

$$V_0 = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/3} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/3} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}, \quad U = \begin{pmatrix} \cos\vartheta & \sin\vartheta\\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0\\ 0 & e^{+i\alpha} \end{pmatrix}$$

Minimal seesaw @ TeV Scale:

Xing & Zhou, PLB '07

- ▶ 2- N_R with highly degenerate masses of O(1) TeV are added.
- Along with ν-oscillation parameters, it also explains baryon number asymmetry through "resonant leptogenesis". [Pilaftsis, Underwood '04]
- *M_D* has been parameterized as,

$$M_D = V_0 egin{pmatrix} 0 & 0 \ x & 0 \ 0 & x \end{pmatrix} U$$
; (M₁, M_R are diag).

where
$$V_0$$
, U are

$$V_0 = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/3} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/3} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}, \quad U = \begin{pmatrix} \cos\vartheta & \sin\vartheta\\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0\\ 0 & e^{+i\alpha} \end{pmatrix}$$

$$\boxed{\text{TBM pattern}}$$

Minimal seesaw @ TeV Scale:

Xing & Zhou, PLB '07

- ▶ 2- N_R with highly degenerate masses of O(1) TeV are added.
- Along with ν-oscillation parameters, it also explains baryon number asymmetry through "resonant leptogenesis". [Pilaftsis, Underwood '04]
- *M_D* has been parameterized as,

under and Mr. II and

$$M_D = V_0 egin{pmatrix} 0 & 0 \ x & 0 \ 0 & x \end{pmatrix} U$$
; (M₁, M_R are diag).

Where
$$V_0$$
, U are

$$V_0 = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/3} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/3} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}, \quad U = \begin{pmatrix} \cos\vartheta & \sin\vartheta\\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0\\ 0 & e^{+i\alpha} \end{pmatrix}$$
TBM pattern

Note: α is the only phase, explains CPV in ν -oscillation & N_i decays.

This model leads to nearly TBM pattern:

$$\theta_{23} = \pi/4, \ \delta = \pm \pi/2, \ \sin^2 \theta_{12} = (1 - 2 \tan^2 \theta_{13})/3$$

• The flavor-dependent CP-violating asymmetry $\varepsilon_{i\alpha}$:

$$arepsilon_{ie} \;=\; rac{\omega^2}{3\left(\omega^2-1
ight)} \; arepsilon_i \;, \qquad \qquad arepsilon_{i\mu} \;=\; arepsilon_{i\tau} \;=\; rac{2\omega^2-3}{6\left(\omega^2-1
ight)} \; arepsilon_i$$

where ε_i is given by:

$$\varepsilon_{i} = \frac{-32\pi v^{2} y^{2} \left(1-\omega^{2}\right)^{2}}{\left(1+\omega^{2}\right) \left[1024\pi^{2} v^{4} r^{2}+y^{4} \left(1+\omega^{2}\right)^{2}\right]} r \sin 4\alpha ,$$

with $r = (M_2 - M_1)/M_2$.

• Note: for $\varepsilon_i \neq 0$, r, α can't be zero.

• The final baryon number asymmetry η_B^f :

$$\eta_{\rm B}^{\rm f} \approx -0.96 \times 10^{-2} \sum_{i,\alpha} (\varepsilon_{i\alpha} \kappa_{i\alpha});$$

 $\kappa_{i\alpha} \Rightarrow {\rm efficiency factor}$

Testing $\mu - \tau$ reflection symmetry @ DUNE:

 DUNE : 'Deep Underground Neutrino Experiment' is a proposed long baseline experiment at Fermilab, USA.

DUNE: νs travel from Fermilab to Sanford Underground Research Facility (SURF), 1300 km, 2.3 GeV, 1.07 MW, 4×10 kt-LArTPC detector.

```
[Alio et al.(DUNE), arXiv:1601.09550].
```

- Their first 2-modules are expected to be completed in 2024, with the beam operational in 2026.
- To simulate the data we use GLoBES package.

arXiv:hep-ph/0407333, 0701187.

Framework:

We consider,

$$M_D = egin{pmatrix} ae^{i\phi_a} & ae^{-i\phi_a} \ be^{i\phi_b} & ce^{i\phi_c} \ ce^{-i\phi_c} & be^{-i\phi_b} \end{pmatrix} \ , M_R = diag(M_1, M_1) \ .$$

Within type-I seesaw:

$$- M_{\nu} = M_{D} M_{R}^{-1} M_{D}^{T},$$

$$= \frac{1}{M_{1}} \begin{pmatrix} 2a^{2} \cos 2\phi_{a} & abe^{i(\phi_{a}+\phi_{b})} + ace^{-i(\phi_{a}-\phi_{c})} & abe^{-i(\phi_{a}+\phi_{b})} + ace^{i(\phi_{a}-\phi_{c})} \\ - & b^{2}e^{2i\phi_{b}} + c^{2}e^{2i\phi_{c}} & 2bc\cos(\phi_{b}-\phi_{c}) \\ - & - & b^{2}e^{-2i\phi_{b}} + c^{2}e^{-2i\phi_{c}} \end{pmatrix}$$

•
$$M_{ee} = M_{ee}^*$$
, $M_{\mu\tau} = M_{\mu\tau}^*$, $M_{e\mu} = M_{e\tau}^*$, $M_{\mu\mu} = M_{\tau\tau}^*$

Predicts non-zero θ_{13} with,

$$\theta_{23} = 45^\circ, \quad \delta = \pm 90^\circ.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NN, arXiv: 1805.05823, PRD98 (2018)

DUNE's Potential:

• CP-conservation hypothesis can be ruled out around 5σ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

NN, arXiv: 1805.05823, PRD98 (2018)

Break M_D : $\widehat{M}_D = \begin{pmatrix} ae^{i\phi_a} & ae^{-i\phi_a} \\ be^{i\phi_b} & ce^{i\phi_c} \\ ce^{-i\phi_c} & b(1+\epsilon)e^{-i\phi_b} \end{pmatrix} .$ $\widehat{M}_\nu \simeq M_\nu - \epsilon \frac{be^{-i\phi_b}}{M_1} \begin{pmatrix} 0 & 0 & ae^{-i\phi_a} \\ 0 & 0 & ce^{i\phi_c} \\ be^{-i\phi_a} & ce^{i\phi_c} & 2be^{-2i\phi_b} \end{pmatrix} + \mathcal{O}(\epsilon^2) .$

DUNE [$3.5 v + 3.5 \overline{v}$], NMO

- Best fit: (238⁺³⁸₋₂₇, 0.547^{+0.02}_{-0.03})
- Predicted δ, θ_{23} are well within 1σ

• Maximal θ_{23} is ruled at $> 1\sigma$

Wrap-up Comments:

- At present, $\mu \tau$ reflection symmetry has an excellent agreement with the latest data, it predicts $\theta_{23} = \pi/4$, $\delta = \pm \pi/2$ and $\theta_{13} \neq 0$ along with $\rho, \sigma = 0, \pi/2$.
- We embed μ τ reflection symmetry in minimal seesaw to explain non-zero neutrino mass as well as their mixings.
- **Considering RG-running equations, we discuss the breaking of the** $\mu \tau$ reflection symmetry
- Also, discuss a TeV scale minimal seesaw model which explains baryon asymmetry of the universe through the resonant leptogenesis.
- Impact of $\mu \tau$ reflection symmetry on DUNE has been examined.
- DUNE with its high statistics and ability to measure (θ₂₃, δ) with high precision, will serve as an excellent experiment to test these different mixing patterns.

Wrap-up Comments:

- At present, $\mu \tau$ reflection symmetry has an excellent agreement with the latest data, it predicts $\theta_{23} = \pi/4$, $\delta = \pm \pi/2$ and $\theta_{13} \neq 0$ along with $\rho, \sigma = 0, \pi/2$.
- We embed $\mu \tau$ reflection symmetry in minimal seesaw to explain non-zero neutrino mass as well as their mixings.
- **Considering RG-running equations, we discuss the breaking of the** $\mu \tau$ reflection symmetry
- Also, discuss a TeV scale minimal seesaw model which explains baryon asymmetry of the universe through the resonant leptogenesis.
- Impact of $\mu \tau$ reflection symmetry on DUNE has been examined.
- DUNE with its high statistics and ability to measure (θ₂₃, δ) with high precision, will serve as an excellent experiment to test these different mixing patterns.

thank you

Back-Up

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Explicit Breaking

▶ Modify (12)-position of *M*_D,

$$\mathbf{S1}: \hspace{0.2cm} M_D' = egin{pmatrix} b & b^*(1+\epsilon) \ c & d \ d^* & c^* \end{pmatrix} \hspace{0.2cm},$$

(2)

æ

・ロト ・聞ト ・ヨト ・ヨト

" ϵ breaks $\mu-\tau$ Reflection Symmetry"

Modify (22)-position of M_R,

$$\mathbf{S4}: \quad M_R' = egin{pmatrix} m_{22} & m_{23} \ m_{23} & m_{22}^*(1+\epsilon) \end{pmatrix} \; ,$$

(3)

æ

・ロト ・聞ト ・ヨト ・ヨト

" ϵ breaks $\mu-\tau$ Reflection Symmetry"

