Questions of flavour

50 years of charm

T.D. Lee Institute

Shanghai 2019

Jean Iliopoulos

ENS, Paris
A short History of Flavour

1932 THE WORLD IS SIMPLE!

The complete Table of Elementary Particles the year 1932.

<table>
<thead>
<tr>
<th>Matter particles</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p) (n) (ν_e)</td>
<td>γ</td>
</tr>
</tbody>
</table>

Three simple rules:

• All matter particles have spin one-half. Radiation quanta have spin one.
• Lepton – Hadron Symmetry
• The role of each one of the elementary particles in the structure of matter is clear and well understood.
A short History of Flavour

1932 THE WORLD IS SIMPLE!

- The complete Table of Elementary Particles the year 1932.

Matter particles: \((p)\) \((n)\) \((\nu)\) \((e)\)

Radiation: \(\gamma\)
A short History of Flavour

1932 THE WORLD IS SIMPLE!

- The complete Table of Elementary Particles the year 1932.

Matter particles: $\left(\begin{array}{c} p \\ n \end{array}\right) \left(\begin{array}{c} \nu \\ e \end{array}\right)$

Radiation: γ

- Three simple rules

- All matter particles have spin one-half. Radiation quanta have spin one.

- Lepton – Hadron Symmetry

- The role of each one of the elementary particles in the structure of matter is clear and well understood.
A short History of Flavour

Muon : The devine laughter

Who ordered that? (I. Rabi, 1947)

More than seventy years later, we still do not know the answer!
A short History of Flavour

Muon : The divine laughter

- *Who ordered that?* (I. Rabi, 1947)

The first *Question of flavour*
A short History of Flavour

Muon : The divine laughter

- *Who ordered that?* (I. Rabi, 1947)

The first *Question of flavour*

- More than seventy years later, we still do not know the answer!
A short History of Flavour

Chaotic Inflation

In the 1940s and 1950s, the extensive use of accelerators resulted into a huge proliferation of new hadronic states.

What is “an elementary particle”?

All three simple rules were violated:

• “Particles” of any spin. No clear distinction between matter constituents and mediators of forces.
• No signs of a Lepton–Hadron Symmetry.
• As for the role of all these particles in the structure of matter, physicists did not even dare to ask the question.
A short History of Flavour

Chaotic Inflation

- In the 1940s and 1950s, the extensive use of accelerators resulted into a huge proliferation of new hadronic states.
A short History of Flavour

Chaotic Inflation

- In the 1940s and 1950s, the extensive use of accelerators resulted into a huge proliferation of new hadronic states.

- What is “an elementary particle”?
A short History of Flavour

Chaotic Inflation

- In the 1940s and 1950s, the extensive use of accelerators resulted into a huge proliferation of new hadronic states.

- What is “an elementary particle”?

- All three simple rules were violated:
 - “Particles” of any spin. No clear distinction between matter constituents and mediators of forces.
 - No signs of a Lepton – Hadron Symmetry.
 - As for the role of all these particles in the structure of matter, physicists did not even dare to ask the question.
A short History of Flavour

Important steps
A short History of Flavour

Important steps

▶ 1944 - ... : “Strange” Particles
A short History of Flavour

Important steps

▶ 1944 - … : “Strange” Particles

▶ 1953 : Strangeness *Gell-Mann, Nishijima*

▶ 1960 : The problem of strangeness changing neutral currents

▶ 1962 : Existence of a ν_{μ} experimentally established

⇒ A second leptonic flavour.

▶ 1964 : The quarks or, the missing triplet

▶ 1964 : The Cabibbo angle
A short History of Flavour

Important steps

- **1944 - ...**: “Strange” Particles

- **1953**: Strangeness *Gell-Mann, Nishijima*

- **1960**: The problem of strangeness changing neutral currents identified *Gell-Mann, Glashow*
A short History of Flavour

Important steps

- **1944** - ...: “Strange” Particles
- **1953**: Strangeness *Gell-Mann, Nishijima*
- **1960**: The problem of strangeness changing neutral currents identified *Gell-Mann, Glashow*
- **1962**: Existence of a ν_μ experimentally established
 \Rightarrow A second leptonic flavour.
A short History of Flavour

Important steps

▶ **1944 - ...** : “Strange” Particles

▶ **1953** : Strangeness *Gell-Mann, Nishijima*

▶ **1960** : The problem of strangeness changing neutral currents identified *Gell-Mann, Glashow*

▶ **1962** : Existence of a ν_μ experimentally established ⇒ A second leptonic flavour.

▶ **1964** : The quarks or, the missing triplet *Gell-Mann, Zweig*
A short History of Flavour

Important steps

- **1944 - ...**: “Strange” Particles
- **1953**: Strangeness *Gell-Mann, Nishijima*
- **1960**: The problem of strangeness changing neutral currents identified *Gell-Mann, Glashow*
- **1962**: Existence of a ν_μ experimentally established \Rightarrow A second leptonic flavour.
- **1964**: The quarks or, the missing triplet *Gell-Mann, Zweig*
- **1964**: The Cabibbo angle
A short History of Flavour

1964 THE WORLD IS NOT SIMPLE!
1964 THE WORLD IS NOT SIMPLE!

The complete Table of Elementary Particles the year 1964.

Matter particles: \((u,d) \quad s \quad (\nu_e) \quad (\nu_\mu) \)

Radiation: \(\gamma \quad \text{IVB} \quad \text{“gluons”} \)
A short History of Flavour

1964 THE WORLD IS NOT SIMPLE!

The complete Table of Elementary Particles the year 1964.

Matter particles: \[
\begin{pmatrix}
u \\
d
\end{pmatrix}
\begin{pmatrix}
\nu_e \\
e
\end{pmatrix}
\begin{pmatrix}
\nu_\mu \\
\mu
\end{pmatrix}
\]

Radiation: \(\gamma\) IVB “gluons”

Out of the three simple rules

• All matter particles have spin one-half. Radiation quanta have spin one. YES

• Lepton – Hadron Symmetry NO

• The role of each one of the elementary particles in the structure of matter is clear and well understood. NO
A short History of Flavour

1969 : GIM ⇒ Restore lepton-hadron symmetry. No FCNC

1972 : Anomalies Bouchiat, JI, Meyer ; Gross, Jackiw ⇒ Lepton-hadron symmetry is a fundamental law of Nature.

1975 - : Discovery of the third family : b, t, τ, ν_τ ⇒ The quarks predicted by Kobayashi-Maskawa, the associated leptons by lepton-hadron symmetry ⇒ The family is complete
A short History of Flavour

1969 : GIM
⇒ Restore lepton-hadron symmetry. No FCNC

1972 : Anomalies
Bouchiat, JI, Meyer ; Gross, Jackiw
⇒ Lepton-hadron symmetry is a fundamental law of Nature.

1975 - : Discovery of the third family :
b, t, τ, ντ
The quarks predicted by Kobayashi-Maskawa, the associated leptons by lepton-hadron symmetry
⇒ The family is complete
A short History of Flavour

- **1969 : GIM**
 ⇒ Restore lepton-hadron symmetry. No FCNC

- **1972 : Anomalies Bouchiat, JL, Meyer; Gross, Jackiw**
 ⇒ Lepton-hadron symmetry is a fundamental law of Nature.
A short History of Flavour

- 1969 : GIM
 ⇒ Restore lepton-hadron symmetry. No FCNC

- 1972 : Anomalies Bouchiat, JI, Meyer; Gross, Jackiw
 ⇒ Lepton-hadron symmetry is a fundamental law of Nature.

- 1975 - : Discovery of the third family : b, t, τ, ν_τ
 The quarks predicted by Kobayashi-Maskawa, the associated leptons by lepton-hadron symmetry
 ⇒ The family is complete
A short History of Flavour

THE WORLD IS NOT SO SIMPLE!
A short History of Flavour

THE WORLD IS NOT SO SIMPLE!

▶ The complete Table of Elementary Particles today.

Matter particles:
\[
\begin{pmatrix}
u_e \\
u_\mu \\
u_\tau \\
\end{pmatrix}
\]

Radiation:
\[
\begin{pmatrix}
\gamma \\ W^\pm, Z^0 \\
\end{pmatrix}
\]

The BEH scalar:
\[
H
\]
THE WORLD IS NOT SO SIMPLE!
THE WORLD IS NOT SO SIMPLE!

- Out of the three simple rules
 - All matter particles have spin one-half. Radiation quanta have spin one. YES
 But the BEH scalar has spin zero!
 - Lepton – Hadron Symmetry YES
 - The role of each one of the elementary particles in the structure of matter is clear and well understood. NO
A short History of Flavour

THE WORLD IS NOT SO SIMPLE!

- Out of the three simple rules
 - All matter particles have spin one-half. Radiation quanta have spin one. YES
 - *But the BEH scalar has spin zero!*
 - Lepton – Hadron Symmetry YES
 - The role of each one of the elementary particles in the structure of matter is clear and well understood. NO

- This last failure brings us back to Rabi’s question: Who ordered flavour?
Flavour : Organised but not understood

Even if we do not know why they are there, heavy flavours have opened vast fields of research:

▶ Study of the CKM matrix and CP violation
▶ Neutrino oscillations
▶ Heavy quark spectroscopy
▶ Precision measurements and/or study of rare events as signs for new physics
Flavour: Organised but not understood

Even if we do not know why they are there, heavy flavours have opened vast fields of research:

- Study of the CKM matrix and CP violation
Flavour : Organised but not understood

Even if we do not know why they are there, heavy flavours have opened vast fields of research:

- Study of the CKM matrix and CP violation
- Neutrino oscillations
Flavour : Organised but not understood

Even if we do not know why they are there, heavy flavours have opened vast fields of research:

- Study of the CKM matrix and CP violation
- Neutrino oscillations
- Heavy quark spectroscopy
Flavour : Organised but not understood

Even if we do not know why they are there, heavy flavours have opened vast fields of research :

- Study of the CKM matrix and CP violation
- Neutrino oscillations
- Heavy quark spectroscopy
- Precision measurements and/or study of rare events as signs for new physics
High precision measurements

Anomalous magnetic moment of the muon

Long-standing discrepancy with the SM

Δa_μ is now measured to 540 ppb; Goal is 140 ppb
High precision measurements

Arduous computation of ever more precise SM prediction

New lattice computation for HLBL term
- physical pion mass and large lattice
- Statistical precision x2 improvement
- Systematics in progress

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value $\times 10^{10}$</th>
<th>Uncertainty $\times 10^{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED</td>
<td>11 658 471.895</td>
<td>0.008</td>
</tr>
<tr>
<td>Electroweak Corrections</td>
<td>15.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HVP (LO) [7]</td>
<td>692.3</td>
<td>4.2</td>
</tr>
<tr>
<td>HVP (LO) [8]</td>
<td>694.9</td>
<td>4.3</td>
</tr>
<tr>
<td>HVP (NLO)</td>
<td>-9.84</td>
<td>0.06</td>
</tr>
<tr>
<td>HVP (NNLO)</td>
<td>1.24</td>
<td>0.01</td>
</tr>
<tr>
<td>HLBL</td>
<td>10.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Total SM prediction [7]</td>
<td>11 659 181.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Total SM prediction [8]</td>
<td>11 659 184.1</td>
<td>5.0</td>
</tr>
<tr>
<td>BNL E821 result</td>
<td>11 659 209.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Fermilab E989 target</td>
<td>≈ 1.6</td>
<td></td>
</tr>
</tbody>
</table>

$\alpha_{\mu}^{\text{HLBL}} = 5.35(1.35) \times 10^{-10}$
Heavy flavour decays

\[
\Delta \chi^2 = 1.0 \text{ contours}
\]

- **LHCb15**
- **BaBar12**
- **LHCb18**
- **Belle19**
- **Belle15**
- **Belle17**
- **HFLAV average**
- **Avg. Experimental**

Average of SM predictions

- \(R(D) = 0.299 \pm 0.003 \)
- \(R(D^*) = 0.258 \pm 0.005 \)

\(\text{HFLAV Spring 2019} \)

\(\text{P}(\chi^2) = 27\% \)
Heavy flavour decays

Flavour changing neutral currents

- Several observables appear different than SM
- In particular P_0' has significant discrepancy
- Global fits show large disagreement
Heavy flavour decays

Summary of B anomalies
Are we there yet?

1. Low $b \to s \mu \mu$ branching fractions
2. Discrepancies in angular observables of $B^0_d \to K^* \mu^+ \mu^-$
3. Signs of lepton non-universality in: $B^+ \to K^+ \mu^+ \mu^-$ and $B^0_d \to K^* \mu^+ \mu^-$
 - All seems to be related to a change in the C_9 coefficient (or maybe C_9 and C_{10}, but V-A)
 - Global fits start to exhibit several standard deviations of discrepancy
 - $c\bar{c}$ interference explanation seems not justified
 - Additional discrepancies in tree-level $B \to D^{(*)} \ell \nu$ decays
 - Many NP explanations: Z', leptoquarks, low mass resonances etc
Neutrino masses and oscillations

Neutrino Physics

Fundamental Questions addressed by Diverse Neutrino Program

- What is the origin of neutrino mass?
- How are the neutrino masses ordered?
 - *Oscillation experiments*
- What is the absolute neutrino mass scale?
 - *Beta-decay spectrum*
 - *Cosmic surveys*
- Do neutrinos and anti-neutrinos oscillate differently?
 - *Oscillation experiments*
- Are there additional neutrino types and interactions?
 - *Oscillation experiments*
 - *Cosmic surveys*
- Are neutrinos their own anti-particles?
 - *Neutrinoless double-beta decay*
My conclusion:

• A data-driven subject in which theorists have not played the major role.

• Substantial improvement in precision could be expected during the coming years.

• The significance of such improvements is not easy to judge.

• So far no real illumination came from leptons to be combined with the quark sector for a more complete theory of flavour.

The trouble is that I do not see how this could change!
My Conclusions

Today we celebrate 50 years of GIM

Our generation built a very successful Standard Theory and it is normal that we leave the problem of its extension to the younger ones.

Nevertheless, I am confident that the GIM trio, together with all our friends, will have again great pleasure in it.

I am looking forward to the celebration of the 75 years of GIM and I expect to give a talk on THE THEORY OF FLAVOUR
My Conclusions

- Today we celebrate 50 years of GIM
My Conclusions

- Today we celebrate 50 years of GIM

- Our generation built a very successful Standard Theory and it is normal that we leave the problem of its extension to the younger ones.
My Conclusions

- Today we celebrate 50 years of GIM

- Our generation built a very successful Standard Theory and it is normal that we leave the problem of its extension to the younger ones.

- Nevertheless, I am confident that the GIM trio, together with all our friends, will have again great pleasure in it.
My Conclusions

- Today we celebrate 50 years of GIM

- Our generation built a very successful Standard Theory and it is normal that we leave the problem of its extension to the younger ones.

- Nevertheless, I am confident that the GIM trio, together with all our friends, will have again great pleasure in it.

- I am looking forward to the celebration of the 75 years of GIM and I expect to give a talk on

THE THEORY OF FLAVOUR