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Overview

• Electroweak Baryogenesis
• The Scalar Singlet Model
• The Phase Transition
• Friction
• Determining the Wall Velocity
• Results
• Strange Transitions
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Electroweak Baryogenesis

• If the EWPT was first order, sphaleron and CP-
violating interaction around the wall could 
produce the matter-antimatter assymmetry
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Electroweak Baryogenesis

• If the EWPT was first order, sphaleron and CP-
violating interaction around the wall could 
produce the matter-antimatter assymmetry

• Not possible in the Standard Model because the 
EWPT is a smooth cross-over
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Electroweak Phase Transition
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<h> = vn

<h> = 0
Bubble Wall
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Wall Shape and Velocity

• The size of the produced assymmetry depends on 
the wall velocity and shape of Higgs field in the 
wall
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Wall Shape and Velocity

• The size of the produced assymmetry depends on 
the wall velocity and shape of Higgs field in the 
wall

• Generally slow walls are preferred for 
baryogenesis
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Wall Shape and Velocity

• The size of the produced assymmetry depends on 
the wall velocity and shape of Higgs field in the 
wall

• Generally slow walls are preferred for 
baryogenesis

• Difficult to compute
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Singlet Scalar Model

• Add a singlet scalar field with a Z2 symmetry

9Avi Friedlander | arxiv:2009.14295



Singlet Scalar Model

• Add a singlet scalar field with a Z2 symmetry

• When electroweak symmetry is broken
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Singlet Scalar Model

• Add a singlet scalar field with a Z2 symmetry

• When electroweak symmetry is broken

• Singlet mass in the broken phase is
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The Effective Potential

• The effective potential was calculated to one loop

• V0 is tree level potential from previous slide
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The Effective Potential

• The effective potential was calculated to one loop

• V1 is Coleman-Weinberg Potential including 
thermal mass ressumation
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The Effective Potential

• The effective potential was calculated to one loop

• Counterterms (VCT) set to preserve three physical 
quantities: λhs, w0, and ms
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The Effective Potential

• The effective potential was calculated to one loop

• VT includes one-loop thermal potential
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Two Step Transition

• Universe starts in EW and 
Z2 symmetric phase
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Two Step Transition

• Universe starts in EW and 
Z2 symmetric phase

• First transition breaks Z2 
symmetry
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Two Step Transition

• Universe starts in EW and 
Z2 symmetric phase

• First transition breaks Z2 
symmetry

• Second transition breaks 
electroweak and restores 
Z2 symmetry
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Nucleation Properties

• Tc - Critical temperature where potential in both 
phases is equal
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Nucleation Properties

• Tc - Critical temperature where potential in both 
phases is equal

• Tn - Nucleation Temperature where bubbles 
actually form
– Tn < Tc
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Nucleation Properties

• Tc - Critical temperature where potential in both 
phases is equal

• Tn - Nucleation Temperature where bubbles 
actually form
– Tn < Tc

• vn Higgs VEV at temperature Tn
– vn/Tn > 1.1 to avoid washout of baryon 

assymetry 21



Deflagrations

22

• Treated as 
perfect fluid 

• Fluid 
Velocity and 
temperature 
change as 
wall and 
shock front 
pass



Determining the Wall Temperature

• T+ found from system of 8 
equations 

• 6 come from integrating Tμν 
across 3 regions:
– Across the wall
– Across the shock front
– From the wall to the shock 

front

• 2 come from lorentz transforms 
between fluid reference frames 23



Assumptions in Determining T+

• Subsonic walls
– Equations are singular when walls break sound 

barrier

24



Assumptions in Determining T+

• Subsonic walls
– Equations are singular when walls break sound 

barrier

• Fluid velocity in universe frame are small
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Assumptions in Determining T+

• Subsonic walls
– Equations are singular when walls break sound 

barrier

• Fluid velocity in universe frame are small

• Not too much supercooling
– Allows density and pressure dependence on 

temperature to simply to T4

– Allows speed of sound to be 1/ 3 26



Wall Temperature

27

• vw defined in 
reference frame of 
fluid in front of wall

• Solutions blow up 
when wall velocity in 
universe frame 
approaches cs
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Equations of Motion

• Treated as scalar fields coupled to perfect fluids
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Equations of Motion

• Treated as scalar fields coupled to perfect fluids

• We assume dominant friction comes from top 
quark and gauge bosons

29

Friction
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Friction

• Requires determining deviation from equillibrium

• Treat as 3 fluids
– Top quark
– Gauge Boson (Combines W and Z fluids)
– Background (all other particles which are treated 

as massless)
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Fluid Approximation

• Only consider fluid excitations with p >>1/LW
– We confirmed IR excitations are subdominant

• Parameterize phase space as:

where perturbation is described by
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Determining the Perturbations

• Perturbations described by Boltzmann equation
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Determining the Perturbations

• Perturbations described by Boltzmann equation

• Boltzmann eq. linearized and turned into ODEs by 
taking three moments
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Perturbation Equations

• Resulting ODEs are:
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Perturbation Equations

• Resulting ODEs are:
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Perturbation Equations

• Resulting ODEs are:
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Perturbation Equations

• Resulting ODEs are:
                                          

• Γi matrices describes fluid 
interaction rate
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m/T approximation

• Ai and Si depends on particle mass 
via ci/di 
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m/T approximation

• Ai and Si depends on particle mass 
via ci/di 

• Often solved to lowest order in m/T 
where ci=di
– Only true for EWPT with small 

vn/Tn
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m/T approximation

• Ai and Si depends on particle mass 
via ci/di 

• Often solved to 1st order in m/T 
where ci=di
– Only true for EWPT with small 

vn/Tn

• We use full m/T dependence 
because we find slow walls for 
phase transitions where mt/T > 1 40



Perturbation Solutions
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Equations of Motion Revisited

• Friction can now be calculated with
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Equations of Motion Revisited

• Friction can now be calculated with

• Then the equations of motion are
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Equations of Motion Revisited

• Friction can now be calculated with

• Then the equations of motion are

44

Set so friction 
cancels out 
potential term



Equations of Motion Revisited

45

Must have correct vw, h(z), 
and s(z) in order to solve 
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Solving the Equations of Motion

We solved the equations of motion in two stages
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Solving the Equations of Motion

We solved the equations of motion in two stages
1.  First use tanh ansatz to find velocity and shape 

guess

-Find vw, Lw that minimize EOM moments
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Solving the Equations of Motion

We solved the equations of motion in two stages
1.  First use tanh ansatz to find velocity and shape 

guess

-Find vw, Lw that minimize EOM moments
2. Use tanh ansatz as initial guess for full solution

-Alternate between relaxing wall shape and 
resolving friction equation
-Converges to EOM solution if vw is correct
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The Parameter Space

• Scanned the parameter space with
0.1 ≤ λhs ≤ 1.5

63 GeV ≤ ms ≤ 114 GeV
100 GeV ≤ w0 ≤ 170 GeV

• This appears to cover the full viable space 
relevant for subsonic walls
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Wall Velocities

50

-Red contours 
indicate λs 
values
-Black 
contours 
indicate vw 
values
-Grey region 
has no 
subsonic 
solution



Supercooling Parameter

• vw is strongly correlated with super cooling 
paraemter, r
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Wall Shape Parameterization

• To describe the trends in wall shapes we use fits to 
tanh profiles

• Wall shape therefore described by 3 parameters:
– Lh, Ls, δz 
– Expressed either in units of GeV-1 or T+-1
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Wall Shape Results

53Avi Friedlander | arxiv:2009.14295



Wall Shape Results
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Wall Shape Results
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Wall Shape Results
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Shape-Velocity Correlation
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Strange Transitions

• Some potentials 
have extra 
minima or 
plateau in their 
potential

• Sensitive to IR 
corrections to 
the potential
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Strange Transitions Profiles
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Plateau Minima
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Strange Transitions

• The bubble 
walls in these 
transitions have 
larger 
deviations from 
a tanh profile
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Conclusions

• Scalar singlet can 
produce bubble walls with 
velocities as low as  
vw ~ 0.22
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Conclusions

• Scalar singlet can 
produce bubble walls with 
velocities as low as  
vw ~ 0.22

• We removed some 
assumptions previously 
used
– tanh ansatz
– m/T dependence
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Conclusions

• Scalar singlet can 
produce bubble walls with 
velocities as low as  
vw ~ 0.22

• We removed some 
assumptions previously 
used
– tanh ansatz
– m/T dependence
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• Supercooling parameter 
r = (vn/Tn)/(vc/Tc) 
strongly correlates with 
wall velocity
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Conclusions

• Scalar singlet can 
produce bubble walls with 
velocities as low as  
vw ~ 0.22

• We removed some 
assumptions previously 
used
– tanh ansatz
– m/T dependence
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• Supercooling parameter 
r = (vn/Tn)/(vc/Tc) 
strongly correlates with 
wall velocity

• Some transition results 
are sensitive to IR 
corrections to the 
effective potential
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Questions?
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