

Queen's
UNIVERSITY

Wall Speed and Shape in Singlet-Assisted Strong Electroweak Phase Transitions

Avi Friedlander (Queen's University: Kingston, Ontario, Canada)

November 20th, 2020

In collaboration with Ian Banta, James Cline, and David Tucker-Smith

Based on: arxiv:2009.14295

- Electroweak Baryogenesis
- The Scalar Singlet Model
- The Phase Transition
- Friction
- Determining the Wall Velocity
- Results
- Strange Transitions

Electroweak Baryogenesis

Queen's
UNIVERSITY

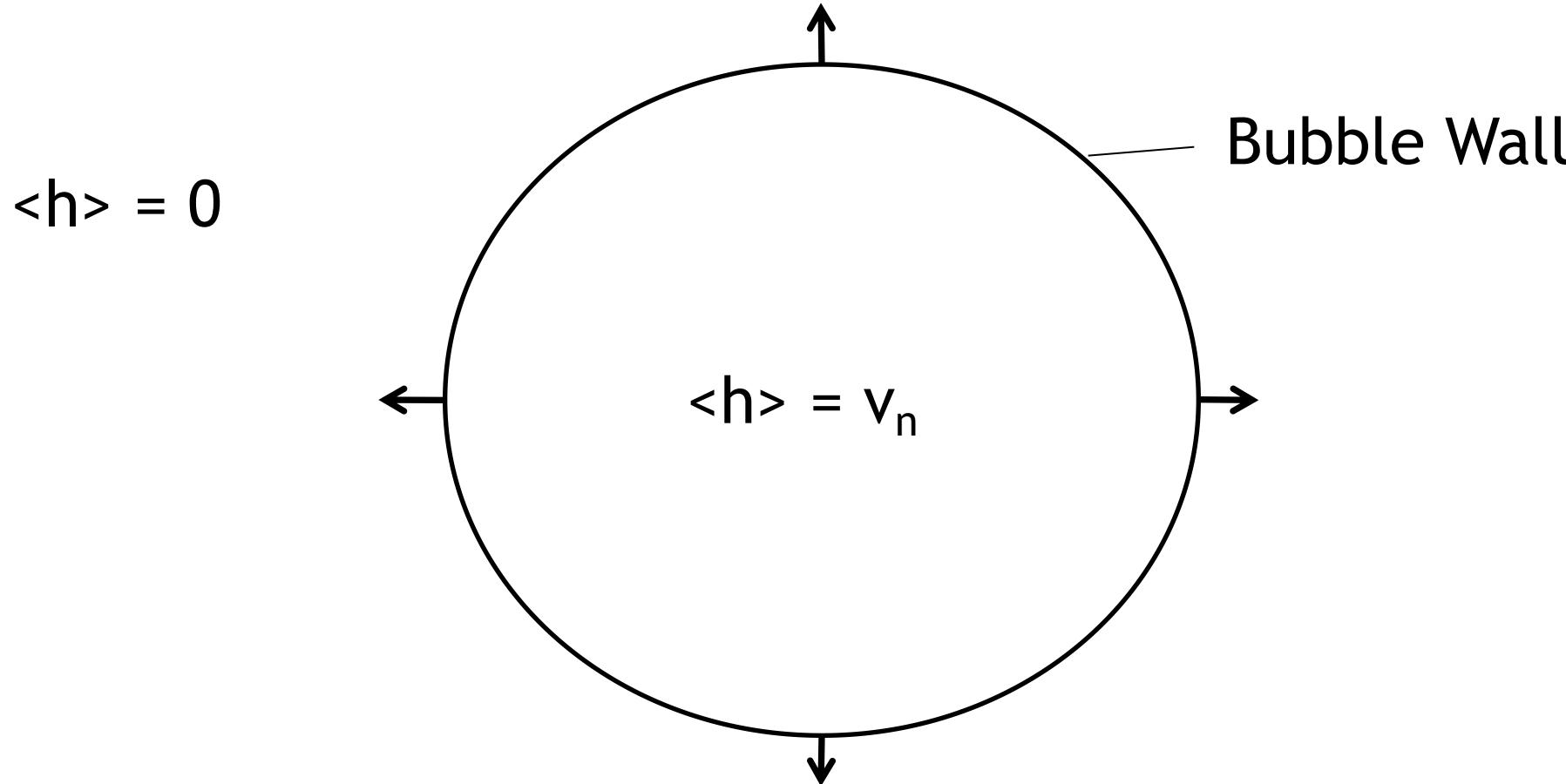
- If the EWPT was first order, sphaleron and CP-violating interaction around the wall could produce the matter-antimatter assymmetry

Electroweak Baryogenesis

Queen's
UNIVERSITY

- If the EWPT was first order, sphaleron and CP-violating interaction around the wall could produce the matter-antimatter assymmetry
- Not possible in the Standard Model because the EWPT is a smooth cross-over

Electroweak Phase Transition



Wall Shape and Velocity

Queen's
UNIVERSITY

- The size of the produced assymmetry depends on the wall velocity and shape of Higgs field in the wall

Wall Shape and Velocity

Queen's
UNIVERSITY

- The size of the produced assymmetry depends on the wall velocity and shape of Higgs field in the wall
- Generally slow walls are preferred for baryogenesis

Wall Shape and Velocity

Queen's
UNIVERSITY

- The size of the produced assymmetry depends on the wall velocity and shape of Higgs field in the wall
- Generally slow walls are preferred for baryogenesis
- Difficult to compute

Singlet Scalar Model

- Add a singlet scalar field with a Z_2 symmetry

$$V_0 = \lambda_h (|H|^2 - \frac{1}{2}v_0^2)^2 + \frac{\lambda_s}{4} (s^2 - w_0^2)^2 + \frac{\lambda_{hs}}{2} |H|^2 s^2$$

Singlet Scalar Model

Queen's
UNIVERSITY

- Add a singlet scalar field with a Z_2 symmetry

$$V_0 = \lambda_h (|H|^2 - \frac{1}{2}v_0^2)^2 + \frac{\lambda_s}{4} (s^2 - w_0^2)^2 + \frac{\lambda_{hs}}{2} |H|^2 s^2$$

- When electroweak symmetry is broken

$$s = 0, H = \frac{1}{\sqrt{2}} (\chi_1 + i\chi_2, h + i\chi_3)^T$$

Singlet Scalar Model

- Add a singlet scalar field with a Z_2 symmetry

$$V_0 = \lambda_h (|H|^2 - \frac{1}{2}v_0^2)^2 + \frac{\lambda_s}{4}(s^2 - w_0^2)^2 + \frac{\lambda_{hs}}{2}|H|^2s^2$$

- When electroweak symmetry is broken

$$s = 0, H = \frac{1}{\sqrt{2}}(\chi_1 + i\chi_2, h + i\chi_3)^T$$

- Singlet mass in the broken phase is

$$m_s^2 = -\lambda_s w_0^2 + \frac{1}{2}\lambda_{hs}v_0^2s^2$$

The Effective Potential

- The effective potential was calculated to one loop

$$V_{\text{eff}} = V_0 + V_1 + V_{CT} + V_T$$

- V_0 is tree level potential from previous slide

$$V_0 = \lambda_h (|H|^2 - \frac{1}{2}v_0^2)^2 + \frac{\lambda_s}{4} (s^2 - w_0^2)^2 + \frac{\lambda_{hs}}{2} |H|^2 s^2$$

The Effective Potential

- The effective potential was calculated to one loop

$$V_{\text{eff}} = V_0 + V_1 + V_{CT} + V_T$$

- V_1 is Coleman-Weinberg Potential including thermal mass resummation

$$V_1 = \sum_{i=h,s,\chi,t,W,Z,\gamma} \frac{n_i m_i^4(h,s,T)}{64\pi^2} \left[\ln\left(\frac{m_i^2(h,s,T)}{v_0^2}\right) - c_i \right]$$

The Effective Potential

- The effective potential was calculated to one loop

$$V_{\text{eff}} = V_0 + V_1 + V_{CT} + V_T$$

- Counterterms (V_{CT}) set to preserve three physical quantities: λ_{hs} , w_0 , and m_s

$$\frac{\partial V}{\partial s} \Big|_{h=0, s=w_0} = 0$$

$$\frac{\partial^2 V}{\partial s^2} \Big|_{h=v_0, s=0} = m_s^2$$

$$\frac{\partial^4 V}{\partial h^2 s^2} \Big|_{h=v_0, s=0} = \lambda_{hs}$$

The Effective Potential

- The effective potential was calculated to one loop

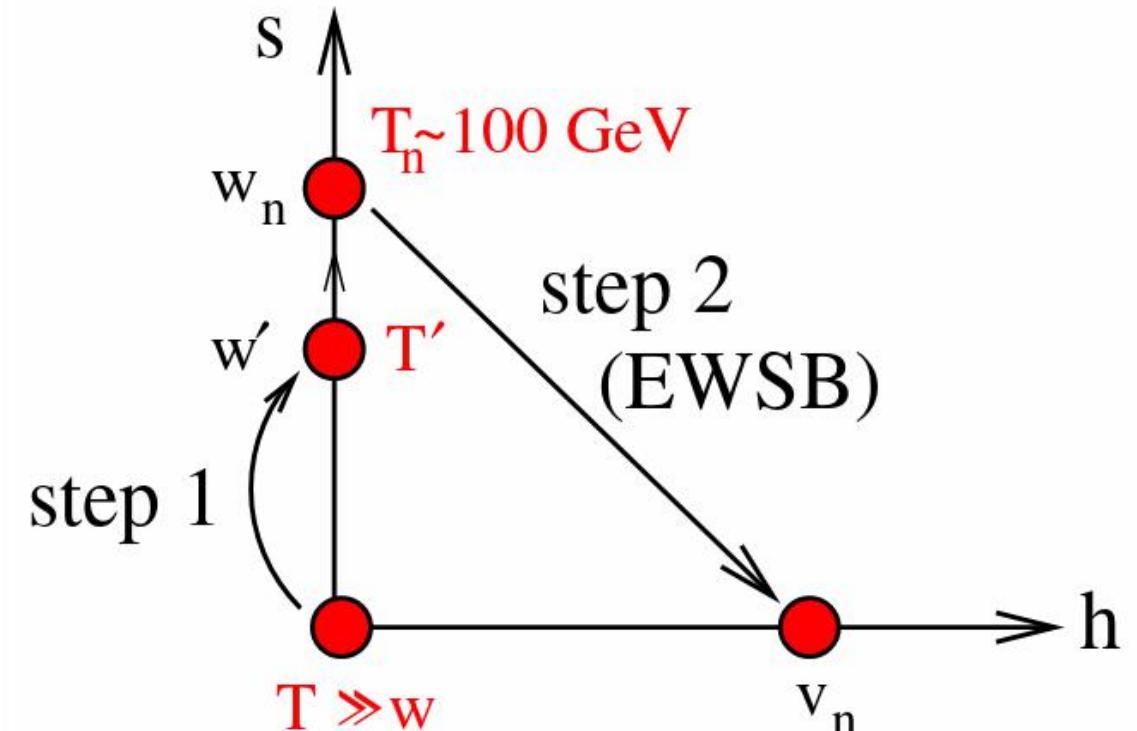
$$V_{\text{eff}} = V_0 + V_1 + V_{CT} + V_T$$

- V_T includes one-loop thermal potential

$$V_T = -\frac{12T^4}{2\pi^2} J_F\left(\frac{m_t(h)}{T^2}\right) + \sum_{i=h,s,\chi,W,Z} \frac{n_i T^4}{2\pi^2} J_B\left(\frac{m_i^2(h,s,T)}{T^2}\right)$$

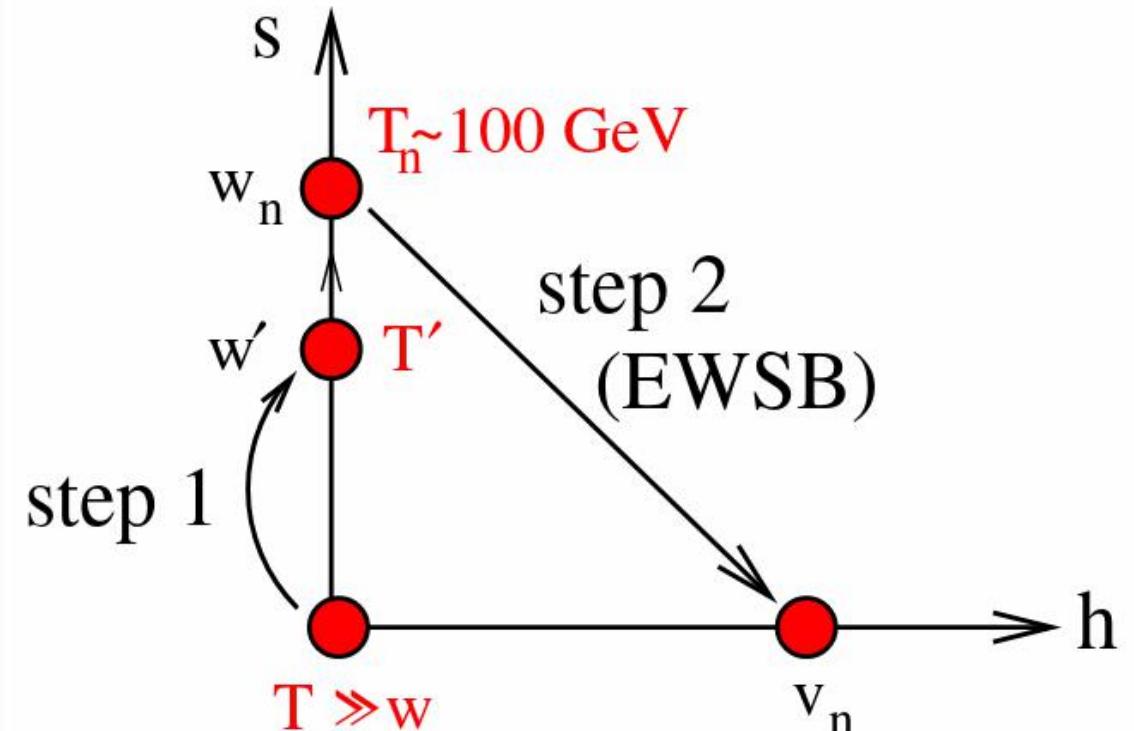
Two Step Transition

- Universe starts in EW and Z_2 symmetric phase



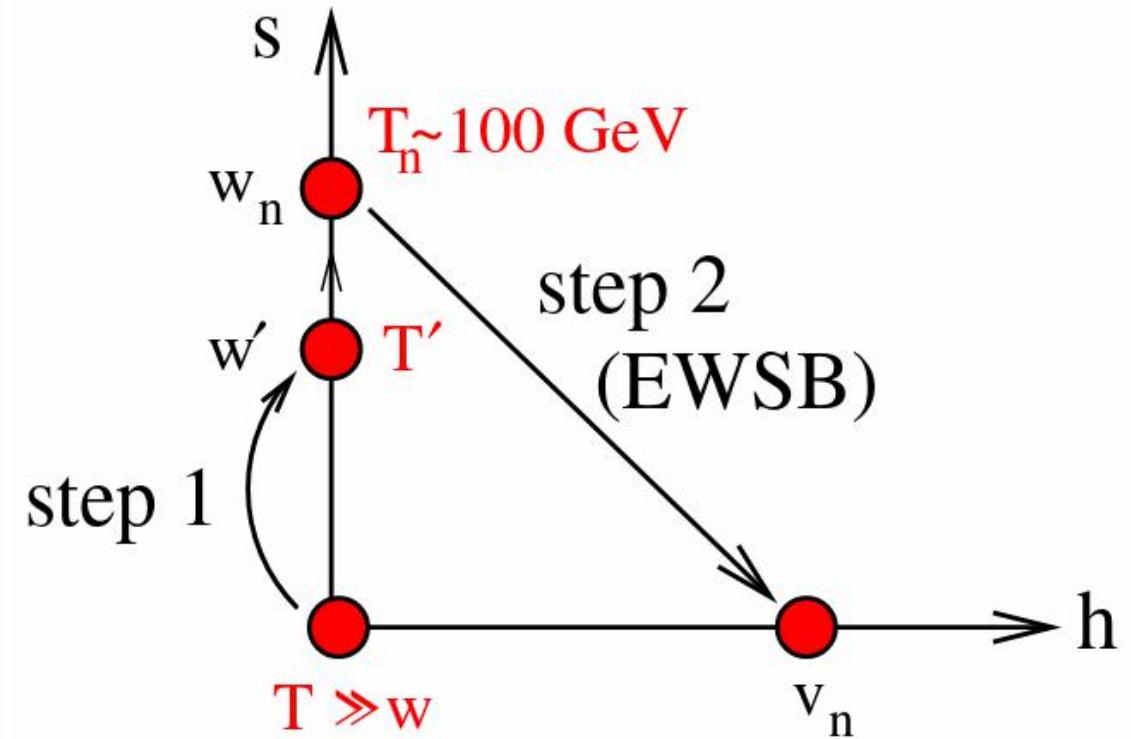
Two Step Transition

- Universe starts in EW and Z_2 symmetric phase
- First transition breaks Z_2 symmetry



Two Step Transition

- Universe starts in EW and Z_2 symmetric phase
- First transition breaks Z_2 symmetry
- Second transition breaks electroweak and restores Z_2 symmetry



Nucleation Properties

Queen's
UNIVERSITY

- T_c - Critical temperature where potential in both phases is equal

Nucleation Properties

Queen's
UNIVERSITY

- T_c - Critical temperature where potential in both phases is equal
- T_n - Nucleation Temperature where bubbles actually form
 - $T_n < T_c$

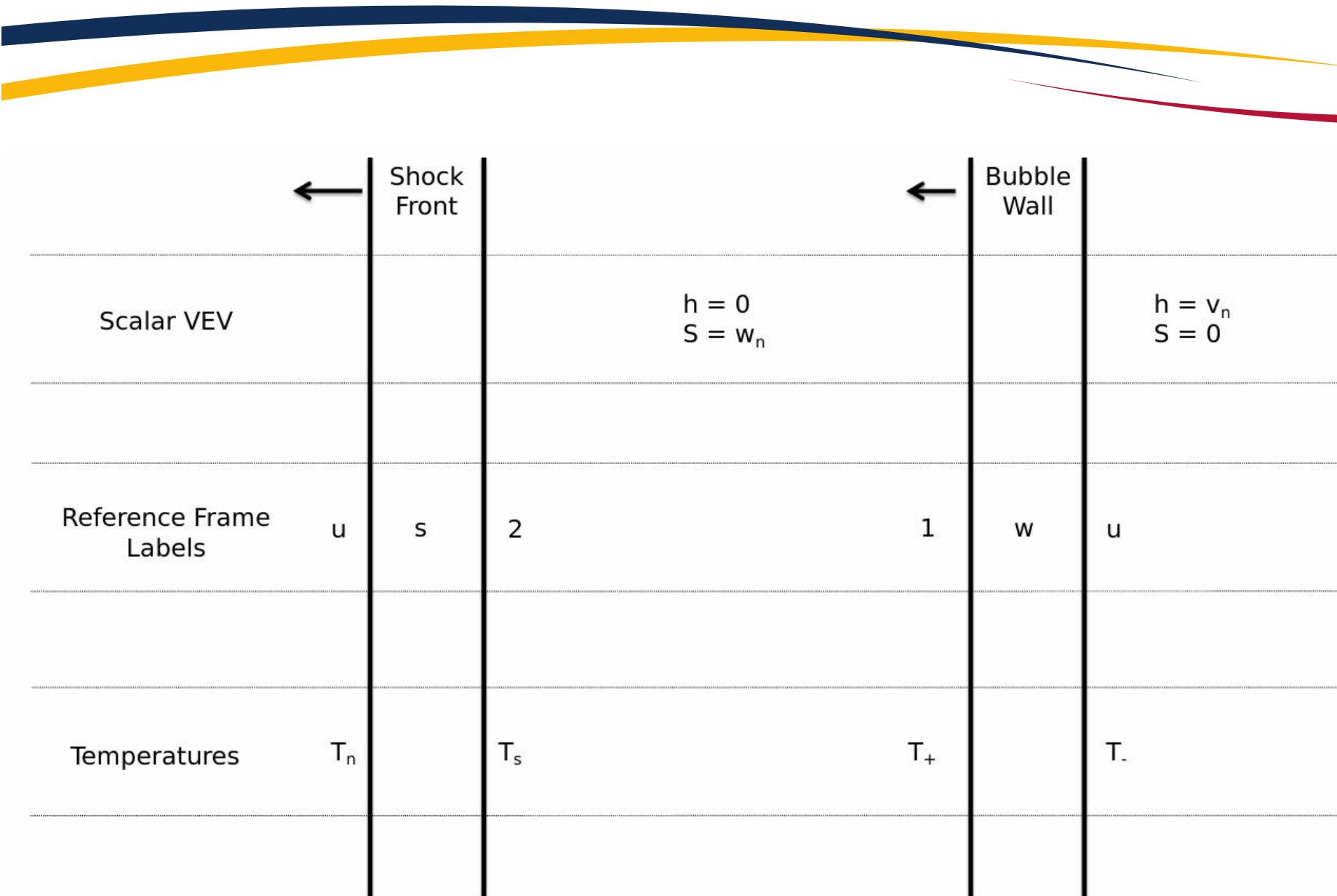
Nucleation Properties

Queen's
UNIVERSITY

- T_c - Critical temperature where potential in both phases is equal
- T_n - Nucleation Temperature where bubbles actually form
 - $T_n < T_c$
- v_n Higgs VEV at temperature T_n
 - $v_n/T_n > 1.1$ to avoid washout of baryon assymetry

Deflagrations

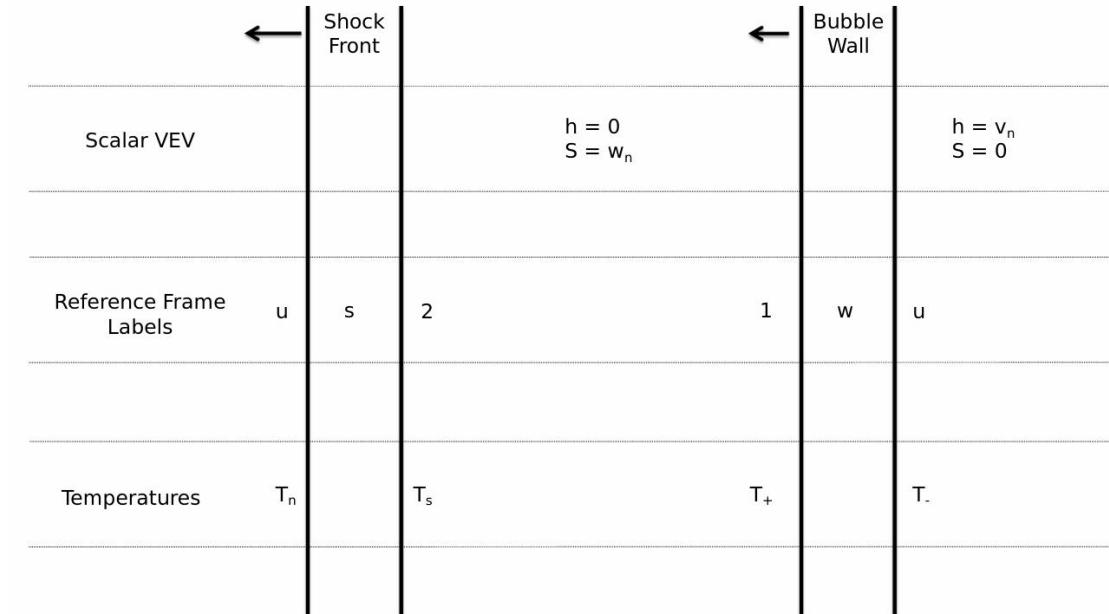
Queen's
UNIVERSITY



- Treated as perfect fluid
- Fluid Velocity and temperature change as wall and shock front pass

Determining the Wall Temperature

- T_+ found from system of 8 equations
- 6 come from integrating $T_{\mu\nu}$ across 3 regions:
 - Across the wall
 - Across the shock front
 - From the wall to the shock front
- 2 come from lorentz transforms between fluid reference frames



Assumptions in Determining T_+

Queen's
UNIVERSITY

- Subsonic walls
 - Equations are singular when walls break sound barrier

Assumptions in Determining T_+

Queen's
UNIVERSITY

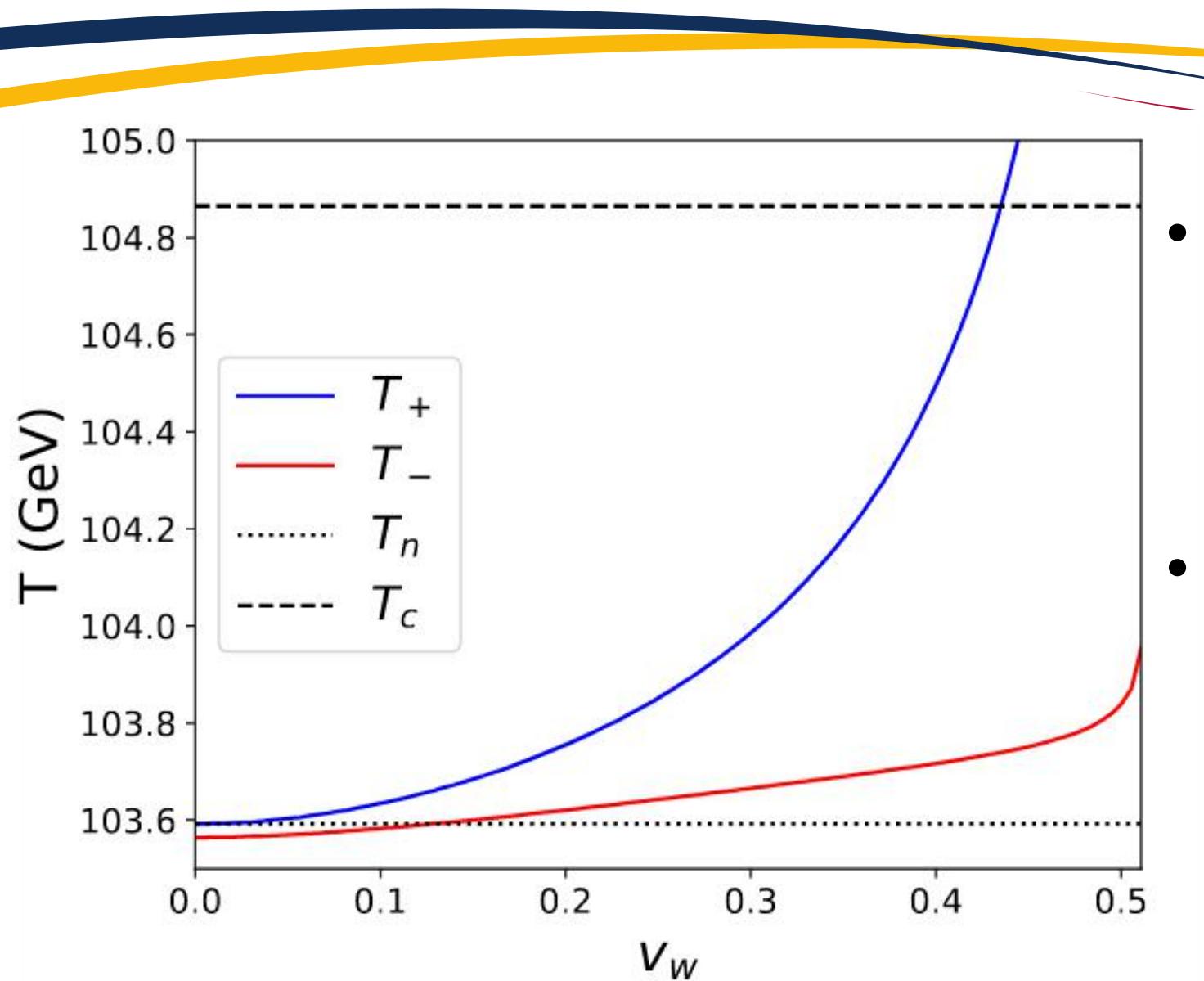
- Subsonic walls
 - Equations are singular when walls break sound barrier
- Fluid velocity in universe frame are small

Assumptions in Determining T_+

- Subsonic walls
 - Equations are singular when walls break sound barrier
- Fluid velocity in universe frame are small
- Not too much supercooling
 - Allows density and pressure dependence on temperature to simply to T^4
 - Allows speed of sound to be $1/\sqrt{3}$

Wall Temperature

Queen's
UNIVERSITY



- v_w defined in reference frame of fluid in front of wall
- Solutions blow up when wall velocity in universe frame approaches c_s

Equations of Motion

Queen's
UNIVERSITY

- Treated as scalar fields coupled to perfect fluids

$$-s''(z) + \frac{\partial V_{\text{eff}}(h, s, T)}{\partial s} = 0$$

$$-h''(z) + \frac{\partial V_{\text{eff}}(h, s, T)}{\partial h} + \sum_{i=t, W, Z} n_i \frac{dm_i^2}{dh} \int \frac{d^3p}{(2\pi)^3 2E} \delta f_i(p, z) = 0$$

Equations of Motion

Queen's
UNIVERSITY

- Treated as scalar fields coupled to perfect fluids

$$-s''(z) + \frac{\partial V_{\text{eff}}(h, s, T)}{\partial s} = 0$$

$$-h''(z) + \frac{\partial V_{\text{eff}}(h, s, T)}{\partial h} + \boxed{\sum_{i=t, W, Z} n_i \frac{dm_i^2}{dh} \int \frac{d^3p}{(2\pi)^3 2E} \delta f_i(p, z)} = 0$$

Friction

- We assume dominant friction comes from top quark and gauge bosons

$$\sum_{i=t, W, Z} n_i \frac{dm_i^2}{dh} \int \frac{d^3p}{(2\pi)^3 2E} \delta f_i(p, z)$$

- Requires determining deviation from equilibrium
- Treat as 3 fluids
 - Top quark
 - Gauge Boson (Combines W and Z fluids)
 - Background (all other particles which are treated as massless)

- Only consider fluid excitations with $p \gg 1/L_w$
 - We confirmed IR excitations are subdominant
- Parameterize phase space as:

$$f_i(E, z) = \frac{1}{e^{(E + \delta_i(z))/T} \pm 1}$$

where perturbation is described by

$$\delta_i(z) = -[T(\delta\mu_i + \delta\mu_{bg})(z) + E(\delta\tau_i + \delta\tau_{bg})(z) + p_z(\delta\nu_i + \delta\nu_{bg})(z)]$$

Determining the Perturbations

Queen's
UNIVERSITY

- Perturbations described by Boltzmann equation

$$\frac{d}{dt} f_i(E, z) = - C[f_i(E, z)]$$

Determining the Perturbations

- Perturbations described by Boltzmann equation
- Boltzmann eq. linearized and turned into ODEs by taking three moments

$$\frac{d}{dt} f_i(E, z) = -C[f_i(E, z)]$$

$$\int d^3p/(2\pi)^3 \quad \int p_z d^3p/(2\pi)^3$$

$$\int (E/T) d^3p/(2\pi)^3$$

Perturbation Equations

- Resulting ODEs are:

$$A_w(\vec{q}_w + \vec{q}_{bg})' + \Gamma_w \vec{q}_w = S_w$$

$$A_t(\vec{q}_t + \vec{q}_{bg})' + \Gamma_t \vec{q}_t = S_t$$

$$A_{bg}\vec{q}_{bg}' + \Gamma_{bg,w}\vec{q}_w + \Gamma_{bg,t}\vec{q}_t = 0$$

$$\vec{q}_i^T = (\delta\mu_i, \delta\tau_i, \deltav_i)$$

Perturbation Equations

Queen's
UNIVERSITY

- Resulting ODEs are:

$$A_w(\vec{q}_w + \vec{q}_{bg})' + \Gamma_w \vec{q}_w = S_w$$

$$A_t(\vec{q}_t + \vec{q}_{bg})' + \Gamma_t \vec{q}_t = S_t$$

$$A_{bg}\vec{q}'_{bg} + \Gamma_{bg,w}\vec{q}_w + \Gamma_{bg,t}\vec{q}_t = 0$$

$$A_i \equiv \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

$$\vec{q}_i^T = (\delta\mu_i, \delta\tau_i, \deltav_i)$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} (-f'_{0,i}) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} (-f'_{0,i}) \frac{p^2 E^{j-4}}{T^{j+1}}$$

Perturbation Equations

Queen's
UNIVERSITY

- Resulting ODEs are:

$$A_w(\vec{q}_w + \vec{q}_{bg})' + \Gamma_w \vec{q}_w = S_w$$

$$A_t(\vec{q}_t + \vec{q}_{bg})' + \Gamma_t \vec{q}_t = S_t$$

$$A_{bg}\vec{q}'_{bg} + \Gamma_{bg,w}\vec{q}_w + \Gamma_{bg,t}\vec{q}_t = 0$$

$$\vec{q}_i^T = (\delta\mu_i, \delta\tau_i, \deltav_i)$$

$$A_i \equiv \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

$$S_i \equiv \frac{m'_i m_i}{T^2} \begin{bmatrix} v_w c_1^i \\ v_w c_2^i \\ 0 \end{bmatrix}$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{p^2 E^{j-4}}{T^{j+1}}$$

Perturbation Equations

- Resulting ODEs are:

$$A_w(\vec{q}_w + \vec{q}_{bg})' + \Gamma_w \vec{q}_w = S_w$$

$$A_t(\vec{q}_t + \vec{q}_{bg})' + \Gamma_t \vec{q}_t = S_t$$

$$A_{bg}\vec{q}'_{bg} + \Gamma_{bg,w}\vec{q}_w + \Gamma_{bg,t}\vec{q}_t = 0$$

$$\vec{q}_i^T = (\delta\mu_i, \delta\tau_i, \deltav_i)$$

- Γ_i matrices describes fluid interaction rate

$$A_i \equiv \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

$$S_i \equiv \frac{m'_i m_i}{T^2} \begin{bmatrix} v_w c_1^i \\ v_w c_2^i \\ 0 \end{bmatrix}$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{p^2 E^{j-4}}{T^{j+1}}$$

m/T approximation

- A_i and S_i depends on particle mass via c_i/d_i

$$A_i = \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

$$S_i \equiv \frac{m'_i m_i}{T^2} \begin{bmatrix} v_w c_1^i \\ v_w c_2^i \\ 0 \end{bmatrix}$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(- f'_{0,i} \right) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(- f'_{0,i} \right) \frac{p^2 E^{j-4}}{T^{j+1}}$$

m/T approximation

- A_i and S_i depends on particle mass via c_i/d_i
- Often solved to lowest order in m/T where $c_i=d_i$
 - Only true for EWPT with small v_n/T_n

$$A_i = \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

$$S_i \equiv \frac{m'_i m_i}{T^2} \begin{bmatrix} v_w c_1^i \\ v_w c_2^i \\ 0 \end{bmatrix}$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(-f'_{0,i} \right) \frac{p^2 E^{j-4}}{T^{j+1}}$$

m/T approximation

- A_i and S_i depends on particle mass via c_i/d_i
- Often solved to 1st order in m/T where $c_i=d_i$
 - Only true for EWPT with small v_n/T_n
- We use full m/T dependence because we find slow walls for phase transitions where $m_t/T > 1$

$$A_i = \begin{bmatrix} v_w c_2^i & v_w c_3^i & \frac{1}{3} d_3^i \\ v_w c_3^i & v_w c_4^i & \frac{1}{3} d_4^i \\ \frac{1}{3} d_3^i & \frac{1}{3} d_4^i & \frac{1}{3} v_w d_4^i \end{bmatrix}$$

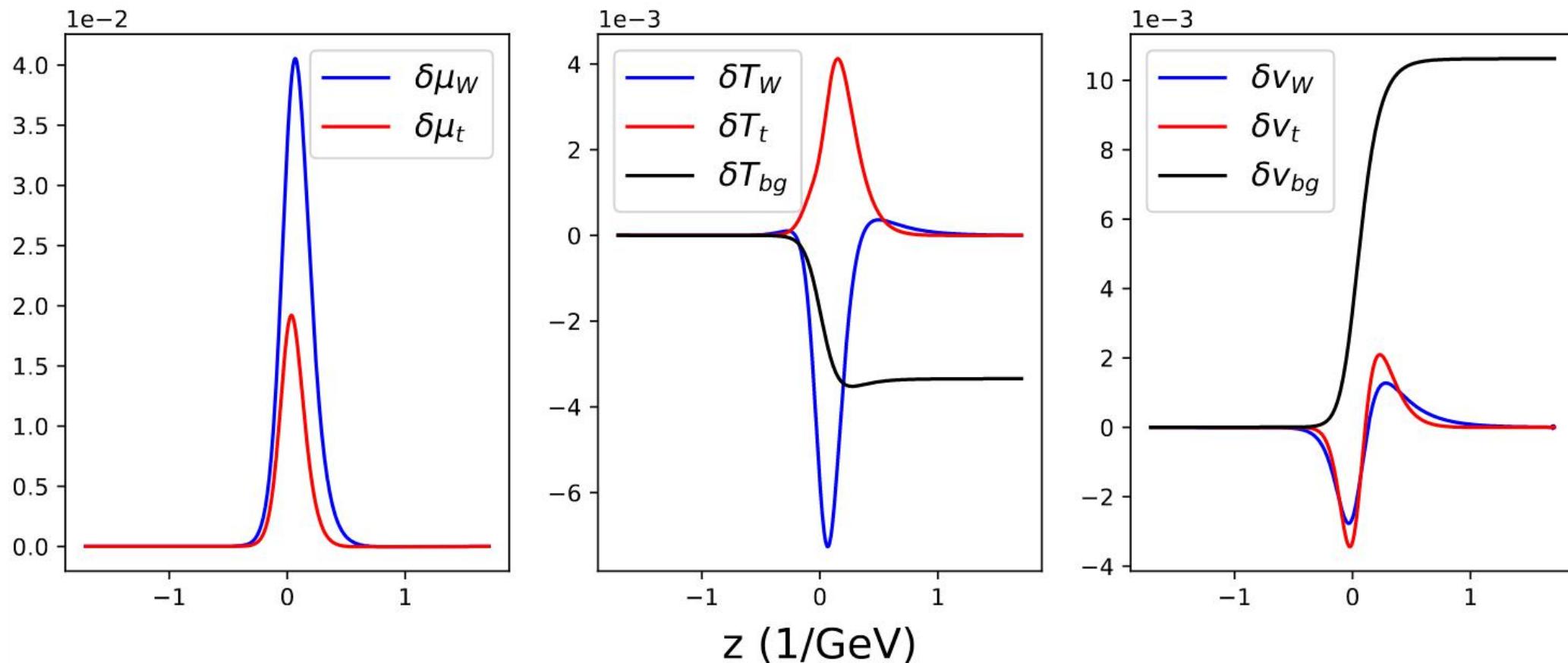
$$S_i \equiv \frac{m'_i m_i}{T^2} \begin{bmatrix} v_w c_1^i \\ v_w c_2^i \\ 0 \end{bmatrix}$$

$$c_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(- f'_{0,i} \right) \frac{E^{j-2}}{T^{j+1}}$$

$$d_j^i \left(\frac{m_i}{T} \right) \equiv \int \frac{d^3 p}{(2\pi)^3} \left(- f'_{0,i} \right) \frac{p^2 E^{j-4}}{T^{j+1}}$$

Perturbation Solutions

Queen's
UNIVERSITY



Equations of Motion Revisited

Queen's
UNIVERSITY

- Friction can now be calculated with

$$\int \frac{d^3 p}{(2\pi)^3 2E} \delta f_i(\vec{p}, z) \approx \frac{T^2}{2} [c_1^i(z) \delta \mu_i(z) + c_2^i(z) (\delta \tau_i(z) + \delta \tau_{bg}(z))]$$

Equations of Motion Revisited

- Friction can now be calculated with

$$\int \frac{d^3 p}{(2\pi)^3 2E} \delta f_i(\vec{p}, z) \approx \frac{T^2}{2} [c_1^i(z) \delta \mu_i(z) + c_2^i(z) (\delta \tau_i(z) + \delta \tau_{bg}(z))]$$

- Then the equations of motion are

$$\begin{aligned} -h''(z) + \frac{\partial V_{eff}(h, s, T_+)}{\partial h} \\ + \frac{n_t T_+}{2} \frac{dm_t^2}{dh} [c_1^t \delta \mu_t + c_2^t (\delta \tau_t + y \delta \tau_{bg})] \\ + \frac{n_w T_+}{2} \frac{dm_w^2}{dh} [c_1^W \delta \mu_w + c_2^W (\delta \tau_w + y \delta \tau_{bg})] = 0 \\ -s''(z) + \frac{\partial V_{eff}(h, s, T)}{\partial s} = 0 \end{aligned}$$

Equations of Motion Revisited

Queen's
UNIVERSITY

- Friction can now be calculated with

$$\int \frac{d^3 p}{(2\pi)^3 2E} \delta f_i(\vec{p}, z) \approx \frac{T^2}{2} [c_1^i(z) \delta \mu_i(z) + c_2^i(z) (\delta \tau_i(z) + \delta \tau_{bg}(z))]$$

- Then the equations of motion are

$$-h''(z) + \frac{\partial V_{eff}(h, s, T_+)}{\partial h}$$

$$+ \frac{n_t T_+}{2} \frac{dm_t^2}{dh} [c_1^t \delta \mu_t + c_2^t (\delta \tau_t + y \delta \tau_{bg})]$$

$$+ \frac{n_w T_+}{2} \frac{dm_w^2}{dh} [c_1^w \delta \mu_w + c_2^w (\delta \tau_w + y \delta \tau_{bg})] = 0$$

$$-s''(z) + \frac{\partial V_{eff}(h, s, T)}{\partial s} = 0$$

Set so friction
cancels out
potential term

Equations of Motion Revisited

Queen's
UNIVERSITY

$$\begin{aligned} -h''(z) + \frac{\partial V_{\text{eff}}(h, s, T_+)}{\partial h} \\ + \frac{n_t T_+}{2} \frac{dm_t^2}{dh} [c_1^t \delta \mu_t + c_2^t (\delta \tau_t + y \delta \tau_{bg})] \\ + \frac{n_w T_+}{2} \frac{dm_w^2}{dh} [c_1^w \delta \mu_w + c_2^w (\delta \tau_w + y \delta \tau_{bg})] = 0 \\ -s''(z) + \frac{\partial V_{\text{eff}}(h, s, T)}{\partial s} = 0 \end{aligned}$$

**Must have correct v_w , $h(z)$,
and $s(z)$ in order to solve**

Solving the Equations of Motion

Queen's
UNIVERSITY

We solved the equations of motion in two stages

Solving the Equations of Motion

Queen's
UNIVERSITY

We solved the equations of motion in two stages

1. First use tanh ansatz to find velocity and shape

guess
$$h(z) = \frac{v(T_-)}{2} \left(\tanh \left(\frac{z}{L_w} \right) + 1 \right)$$

-Find v_w , L_w that minimize EOM moments

Solving the Equations of Motion

Queen's
UNIVERSITY

We solved the equations of motion in two stages

1. First use tanh ansatz to find velocity and shape

guess
$$h(z) = \frac{v(T_-)}{2} \left(\tanh\left(\frac{z}{L_w}\right) + 1 \right)$$

-Find v_w , L_w that minimize EOM moments

2. Use tanh ansatz as initial guess for full solution

-Alternate between relaxing wall shape and
resolving friction equation

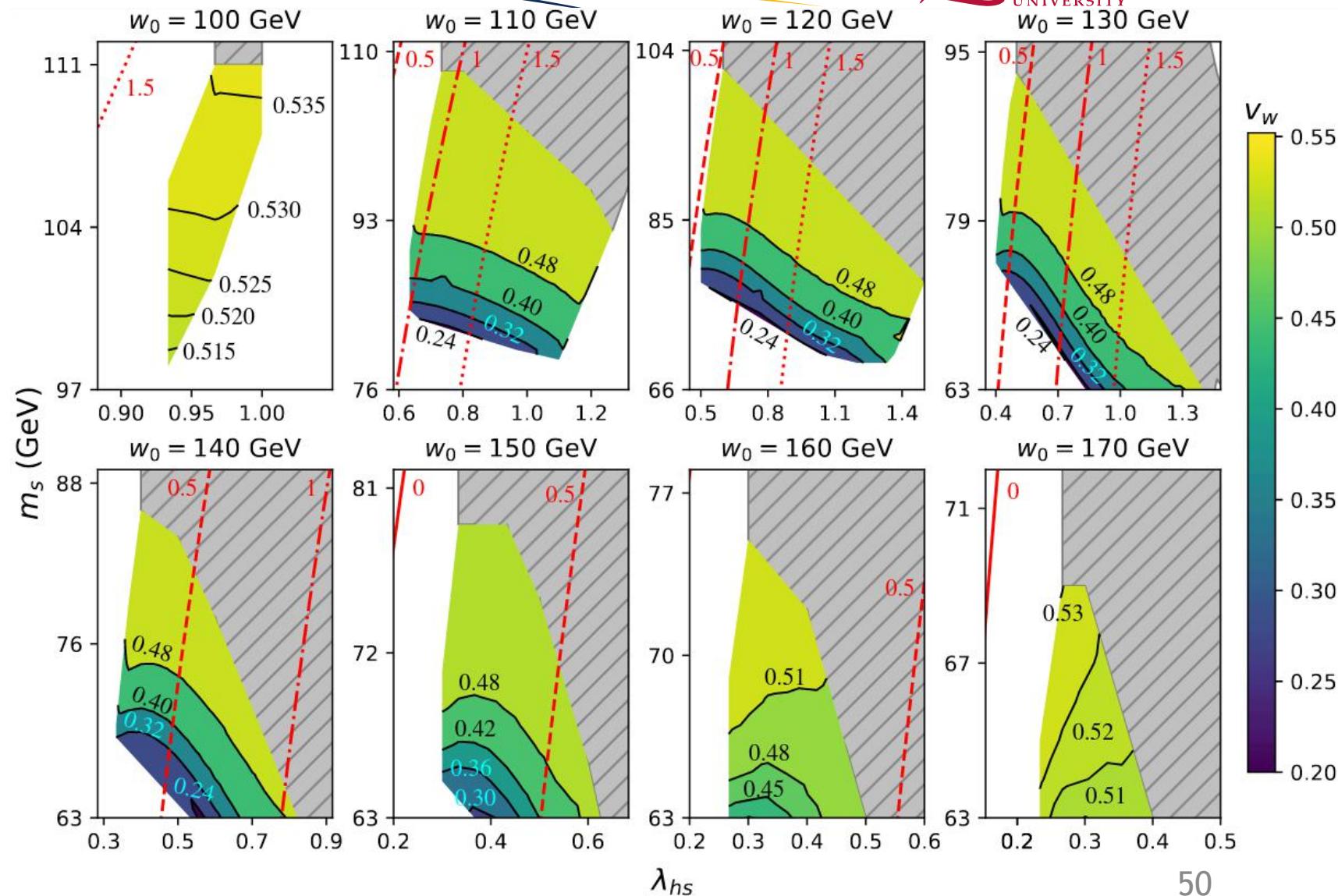
-Converges to EOM solution if v_w is correct

The Parameter Space

- Scanned the parameter space with
 - $0.1 \leq \lambda_{hs} \leq 1.5$
 - $63 \text{ GeV} \leq m_s \leq 114 \text{ GeV}$
 - $100 \text{ GeV} \leq w_0 \leq 170 \text{ GeV}$
- This appears to cover the full viable space relevant for subsonic walls

Wall Velocities

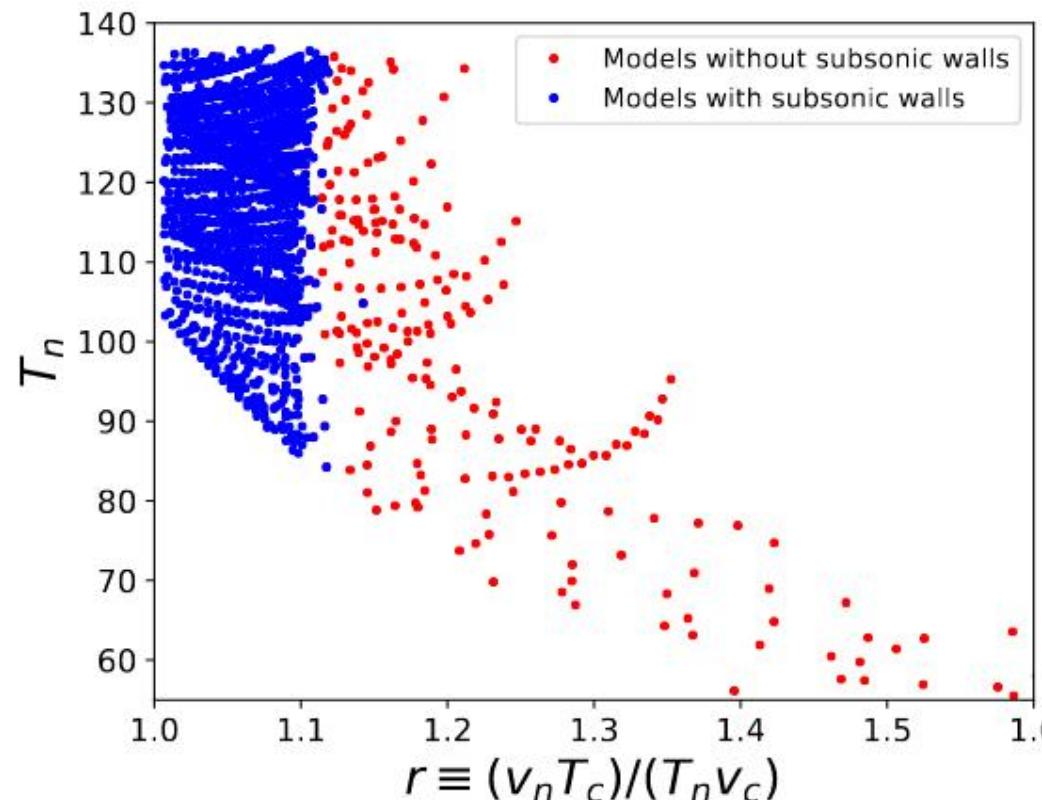
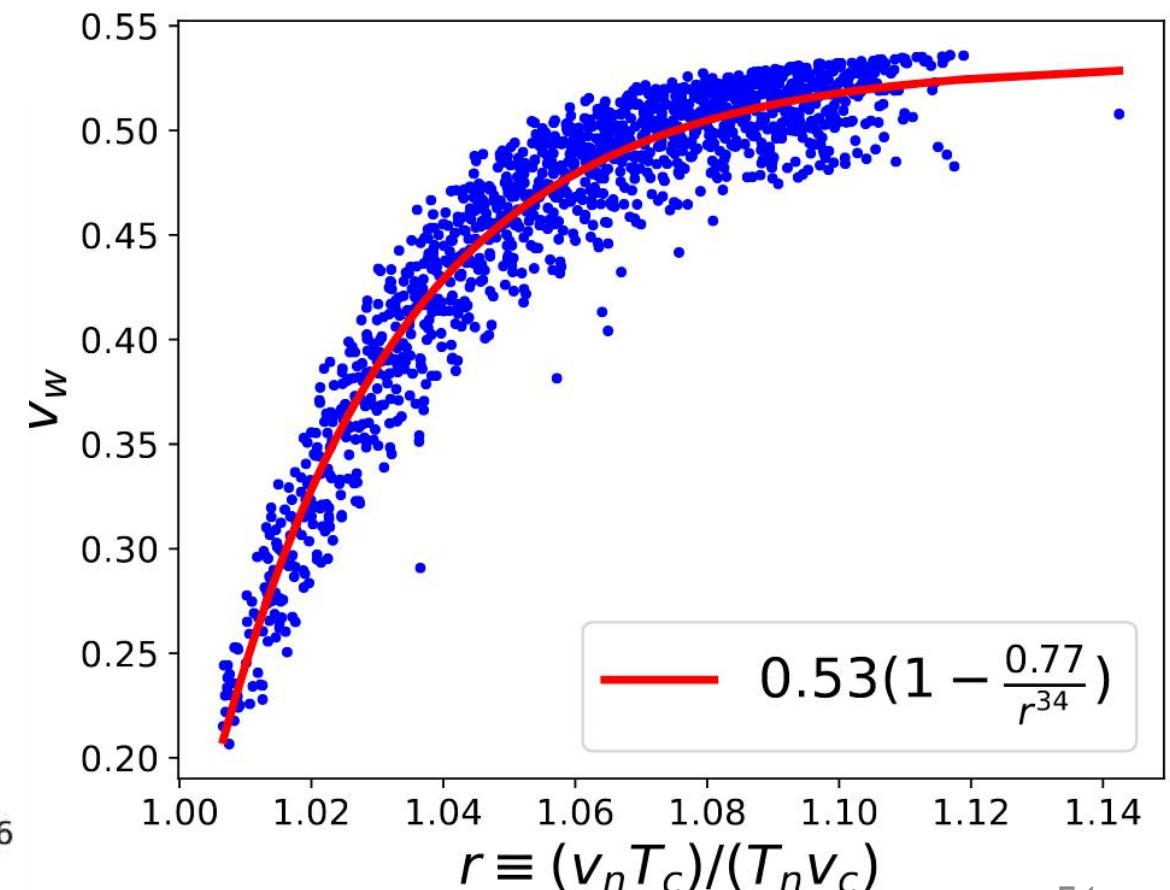
- Red contours indicate λ_s values
- Black contours indicate v_w values
- Grey region has no subsonic solution



Supercooling Parameter

Queen's
UNIVERSITY

- v_w is strongly correlated with super cooling parameter, r



Wall Shape Parameterization

Queen's
UNIVERSITY

- To describe the trends in wall shapes we use fits to tanh profiles

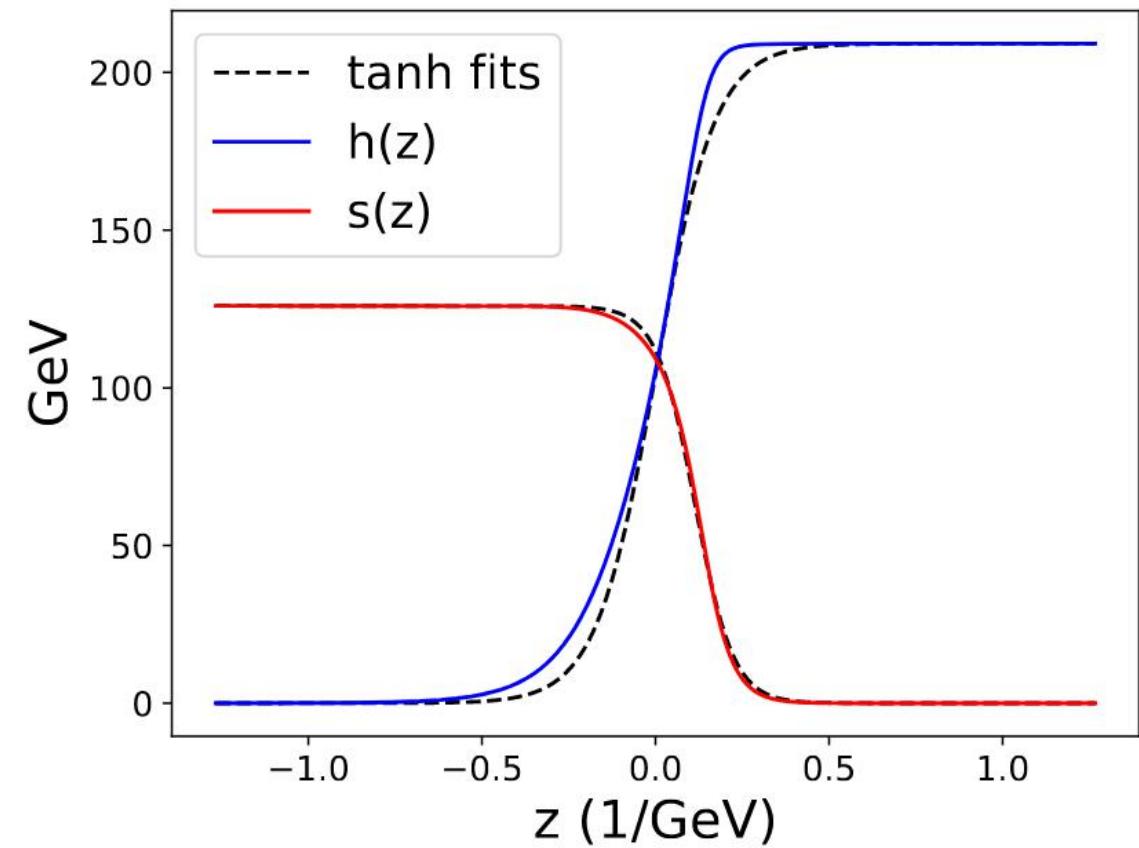
$$h_{fit}(z) = \frac{h_0}{2} \left(1 + \tanh\left(\frac{z}{L_h}\right) \right)$$

$$s_{fit}(z) = \frac{s_0}{2} \left(1 + \tanh\left(\frac{z - \delta_z}{L_s}\right) \right)$$

- Wall shape therefore described by 3 parameters:
 - L_h , L_s , δ_z
 - Expressed either in units of GeV^{-1} or T_+^{-1}

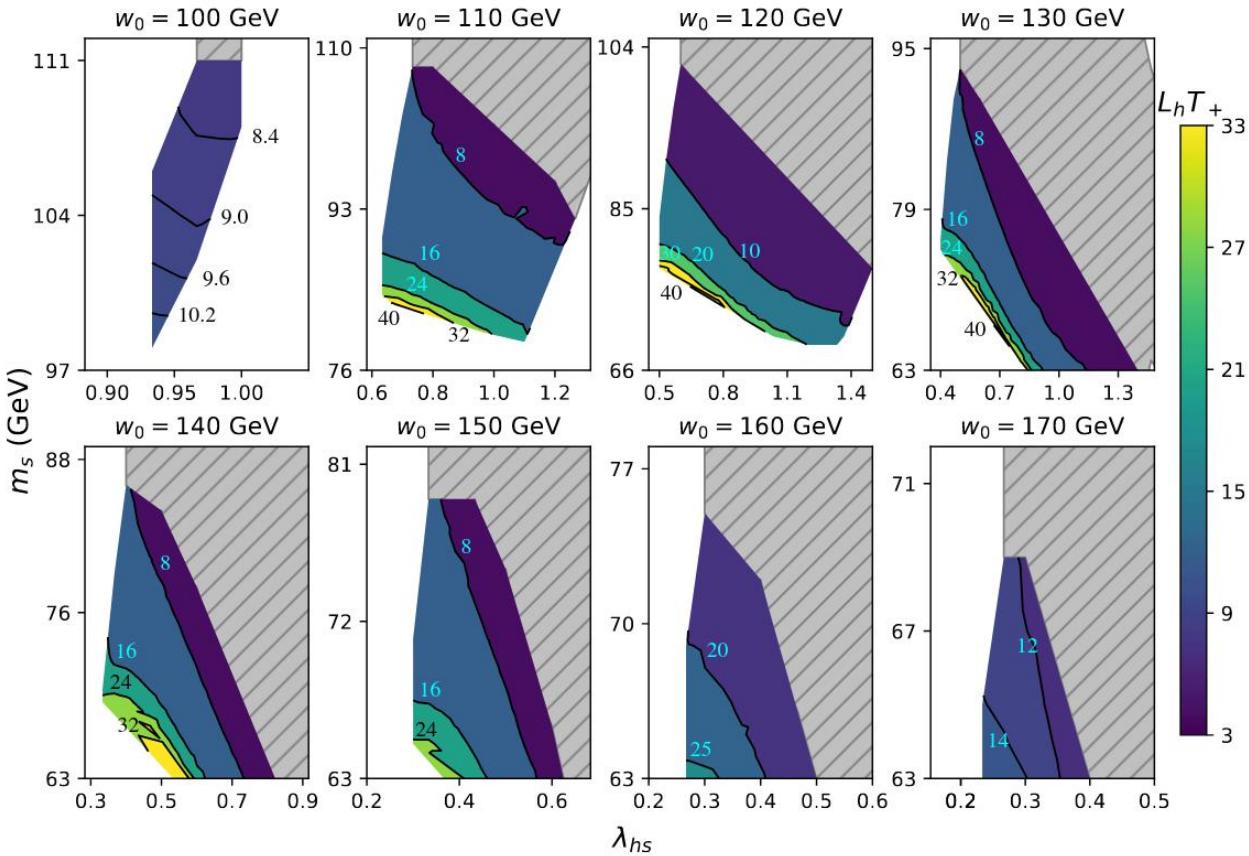
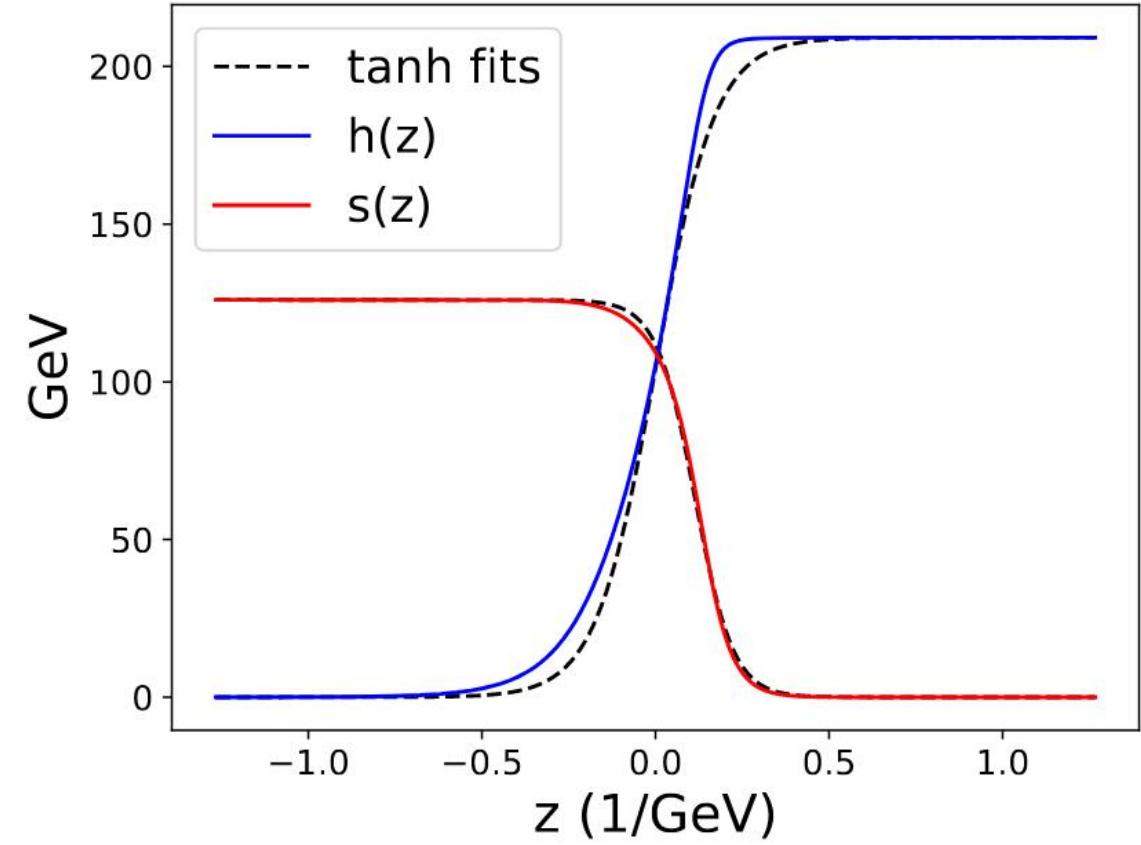
Wall Shape Results

Queen's
UNIVERSITY



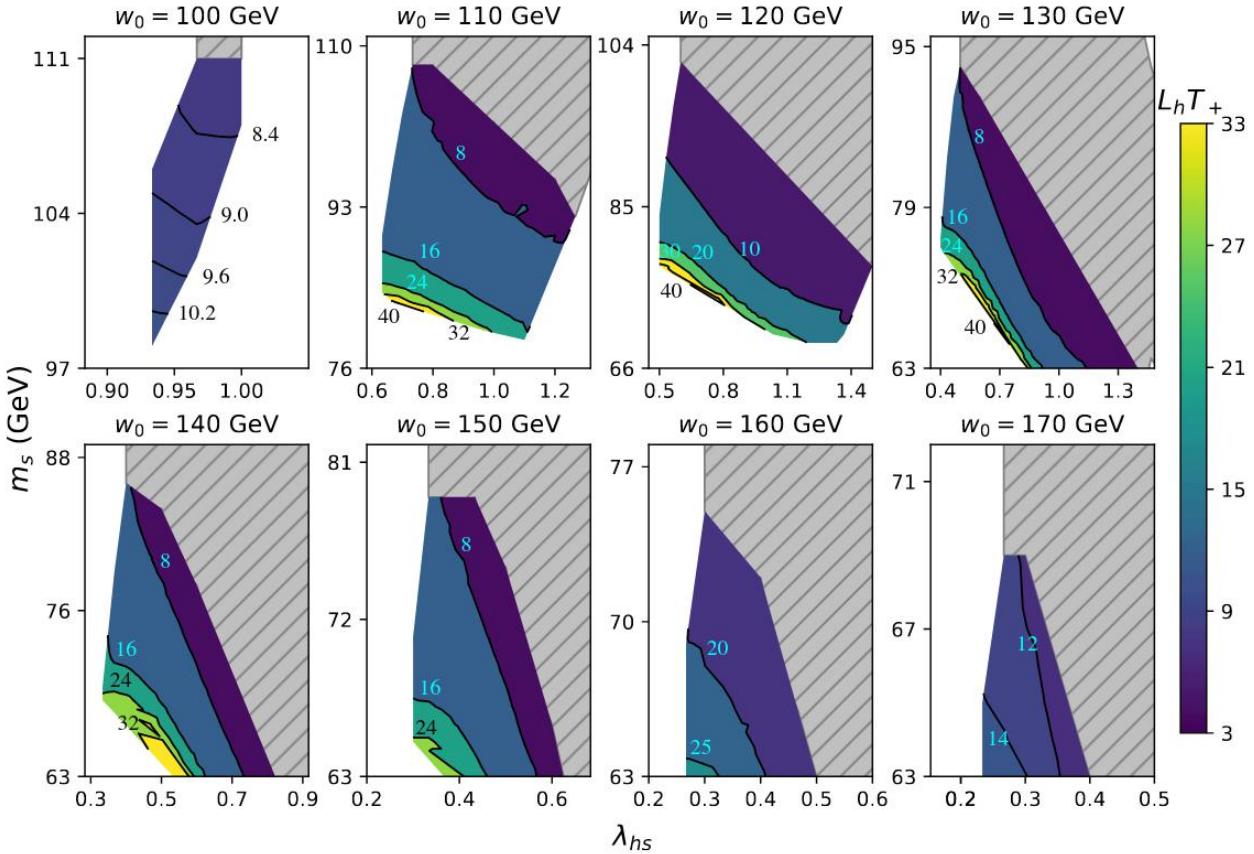
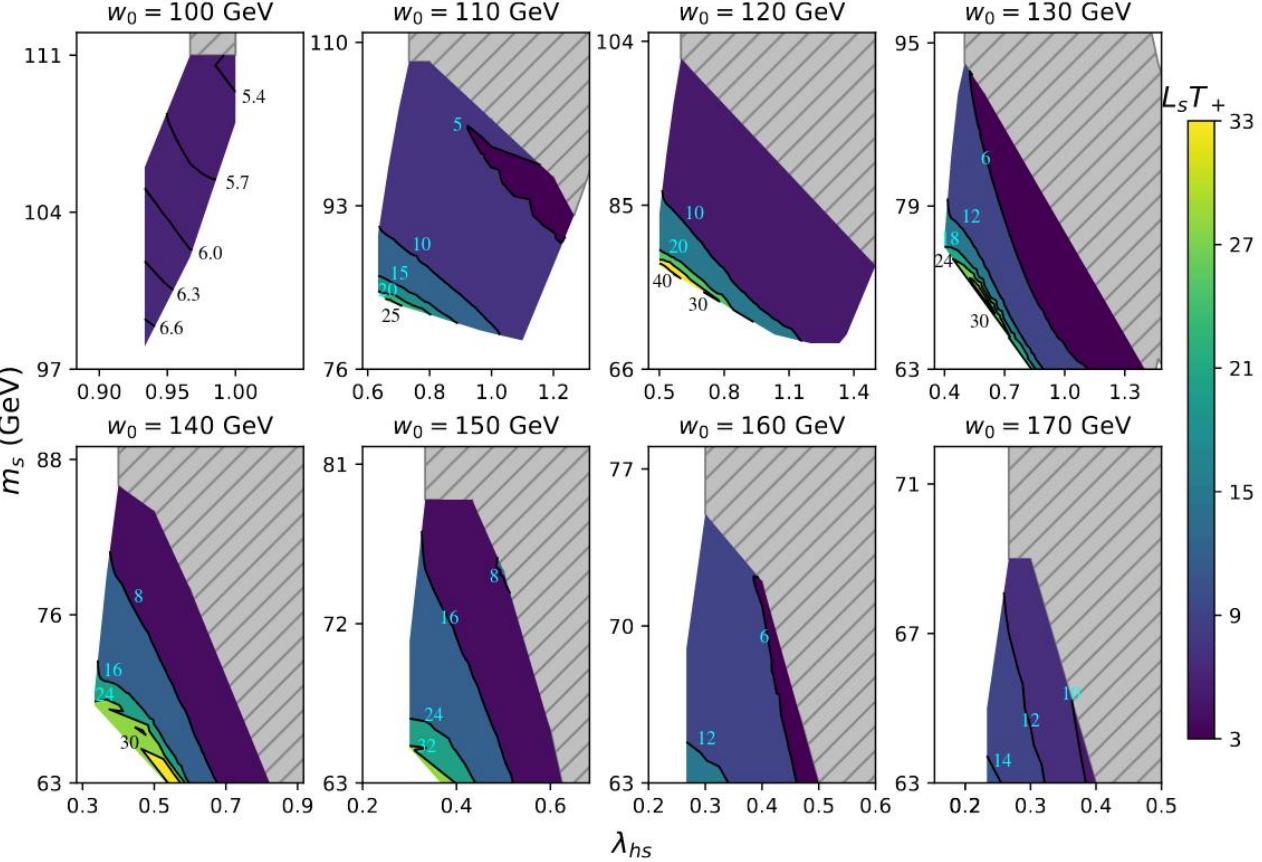
Wall Shape Results

Queen's
UNIVERSITY



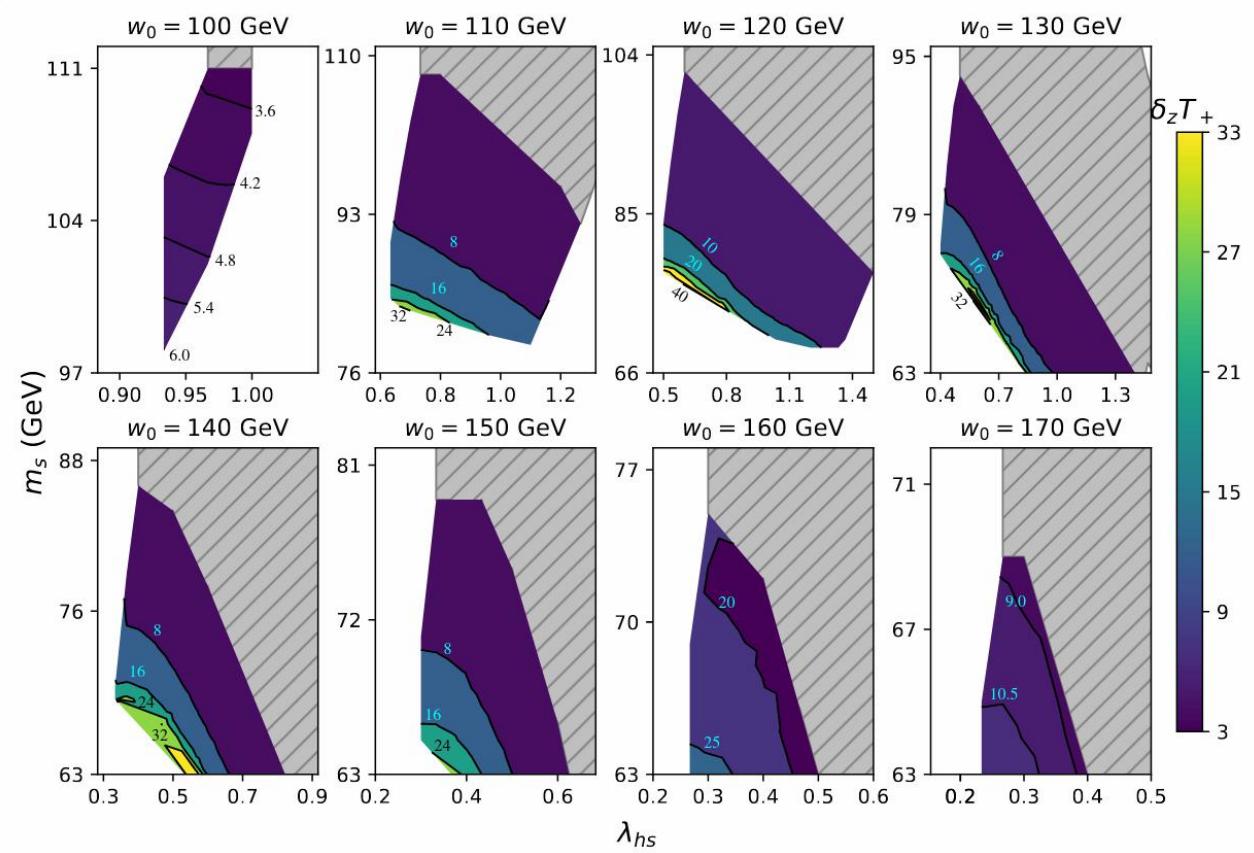
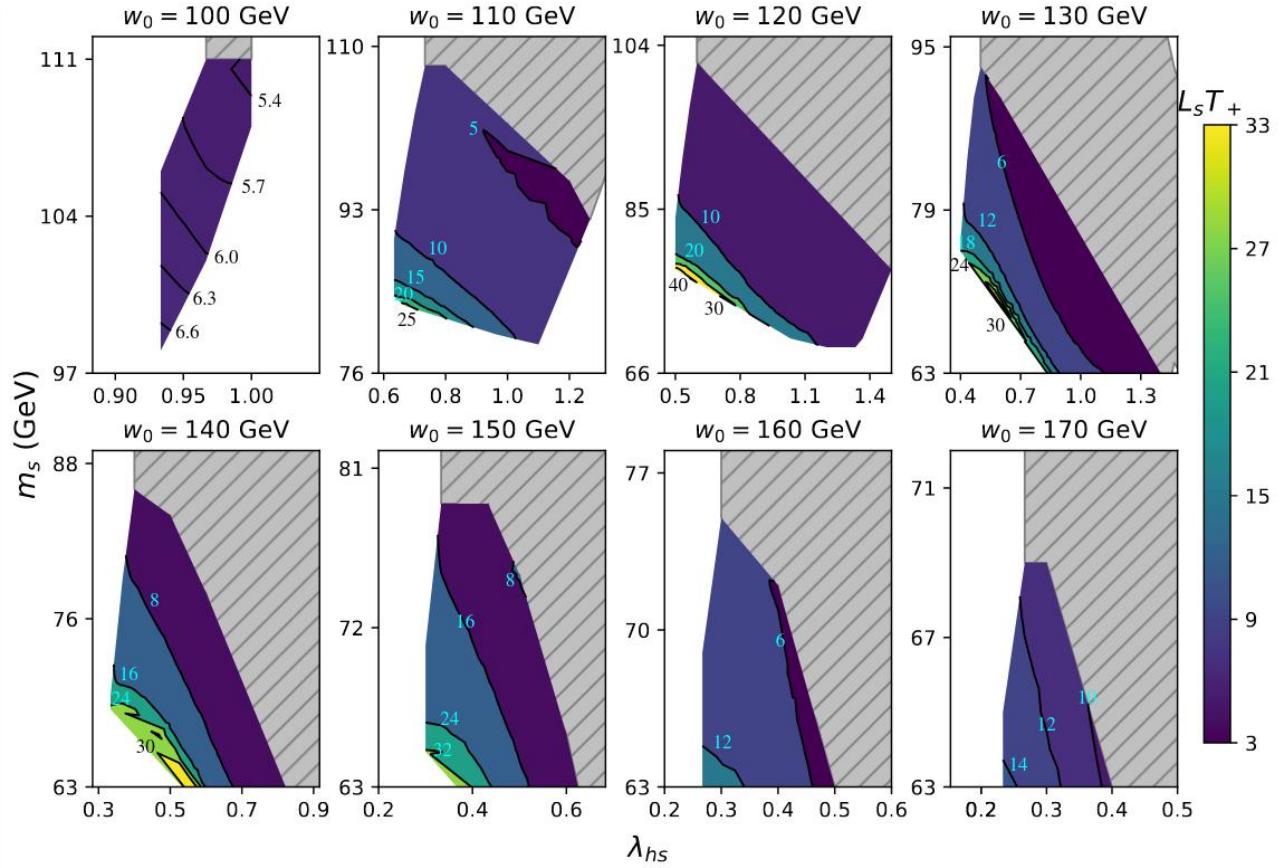
Wall Shape Results

Queen's
UNIVERSITY

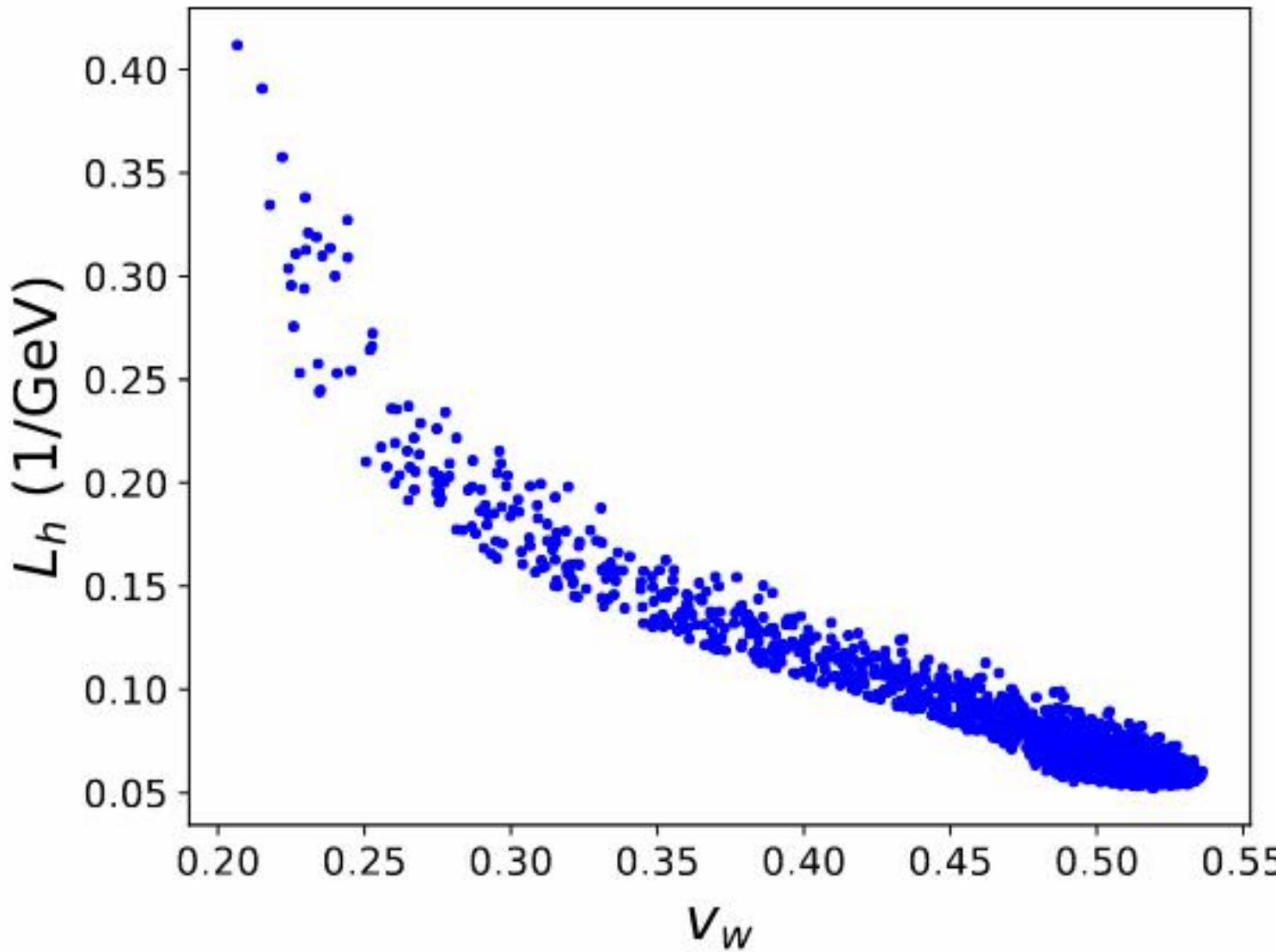
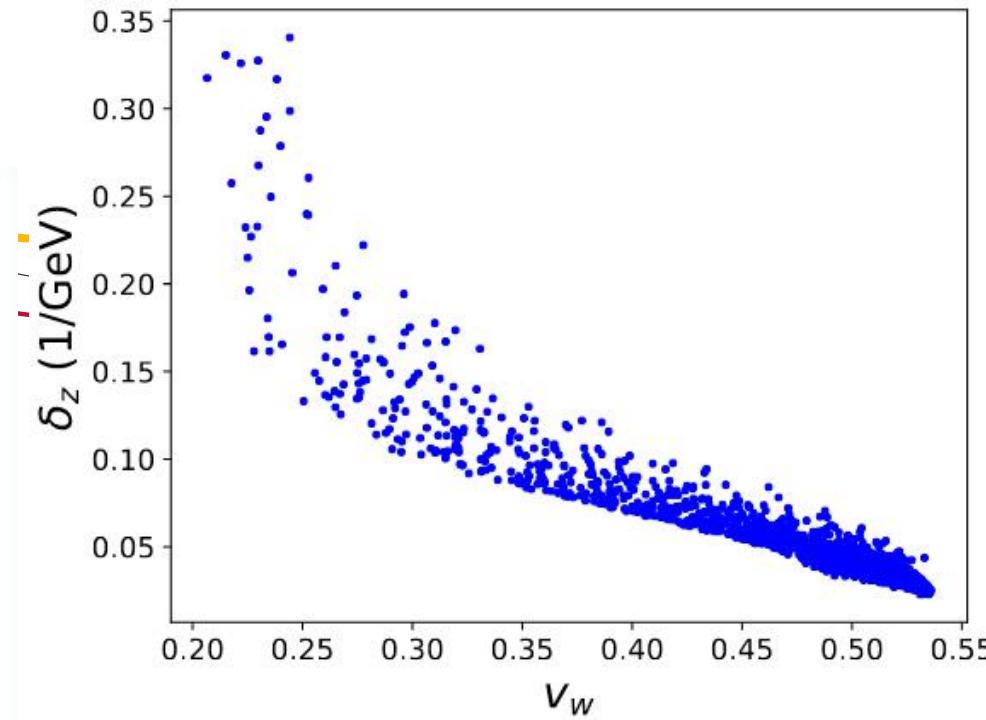
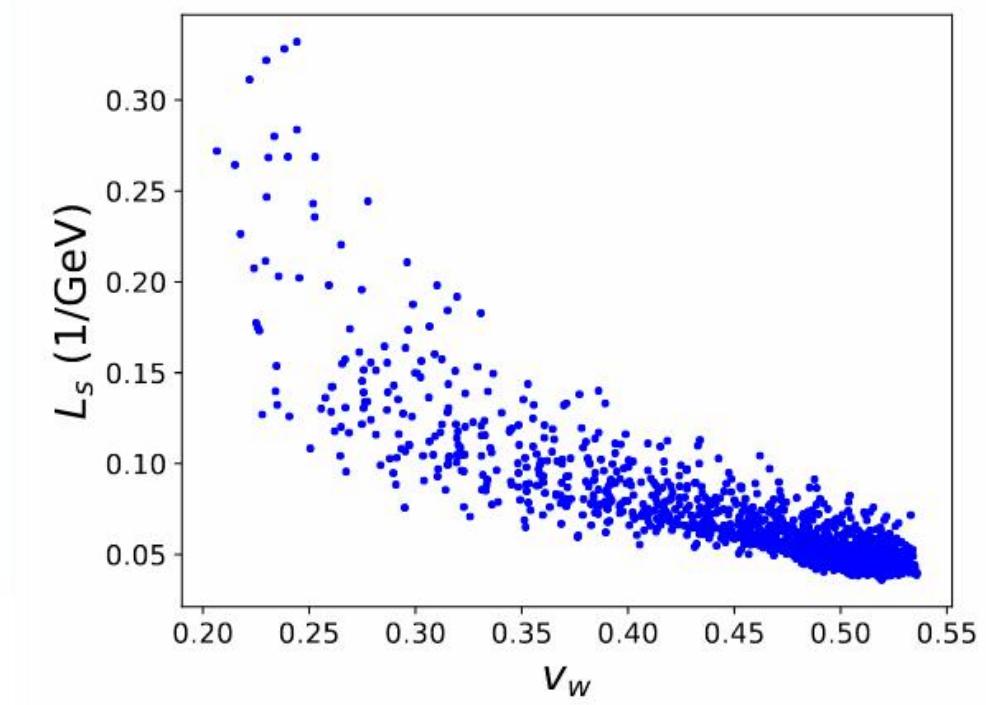


Wall Shape Results

Queen's
UNIVERSITY

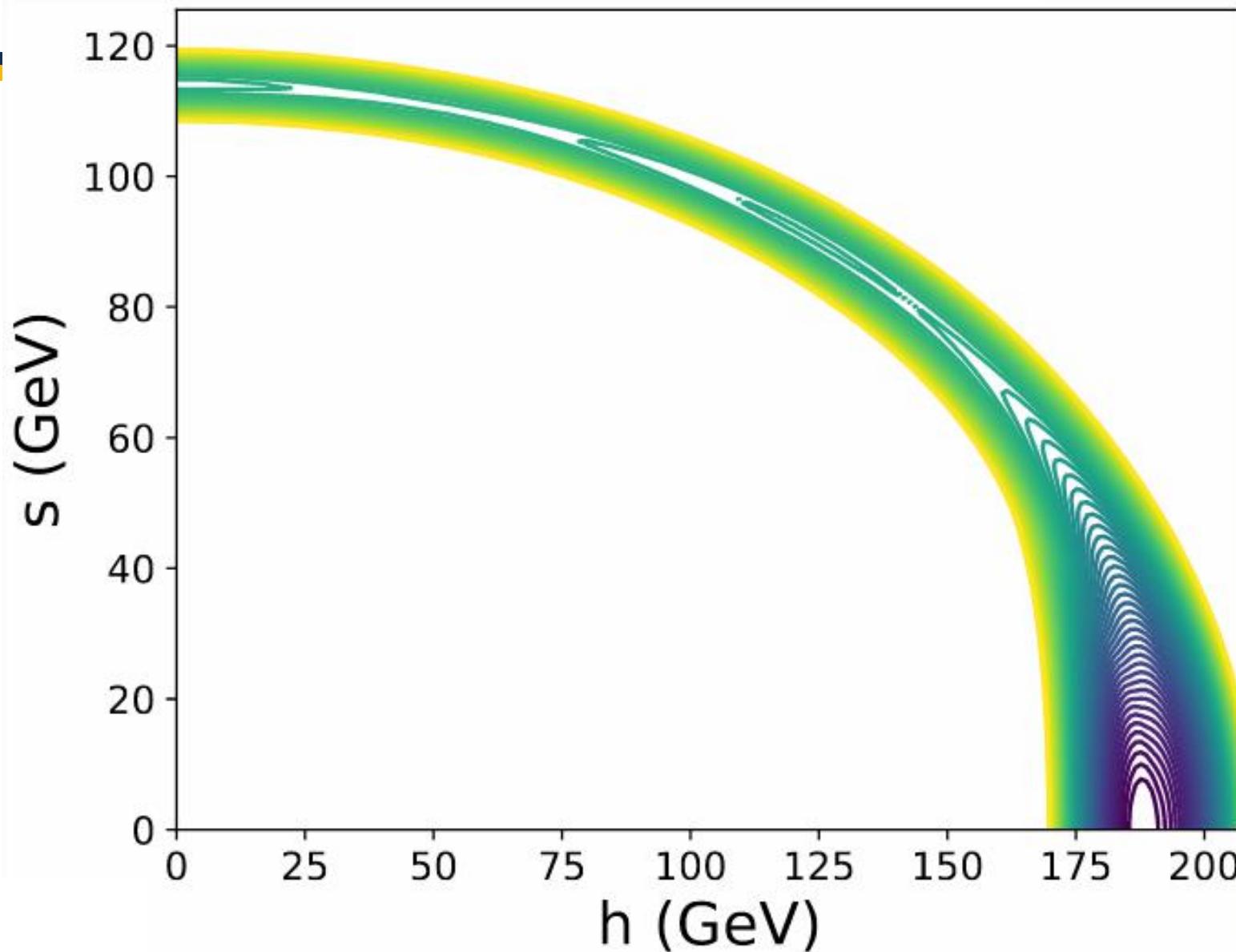


Shape-Velocity Correlation



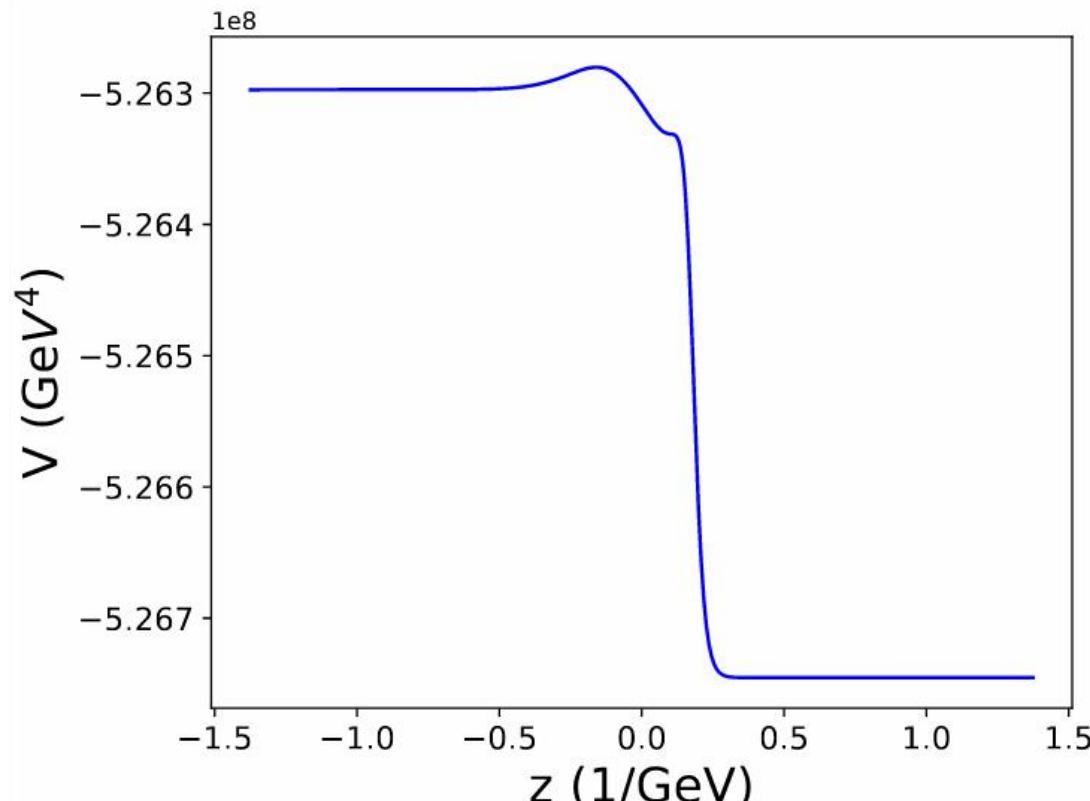
Strange Transitions

- Some potentials have extra minima or plateau in their potential
- Sensitive to IR corrections to the potential

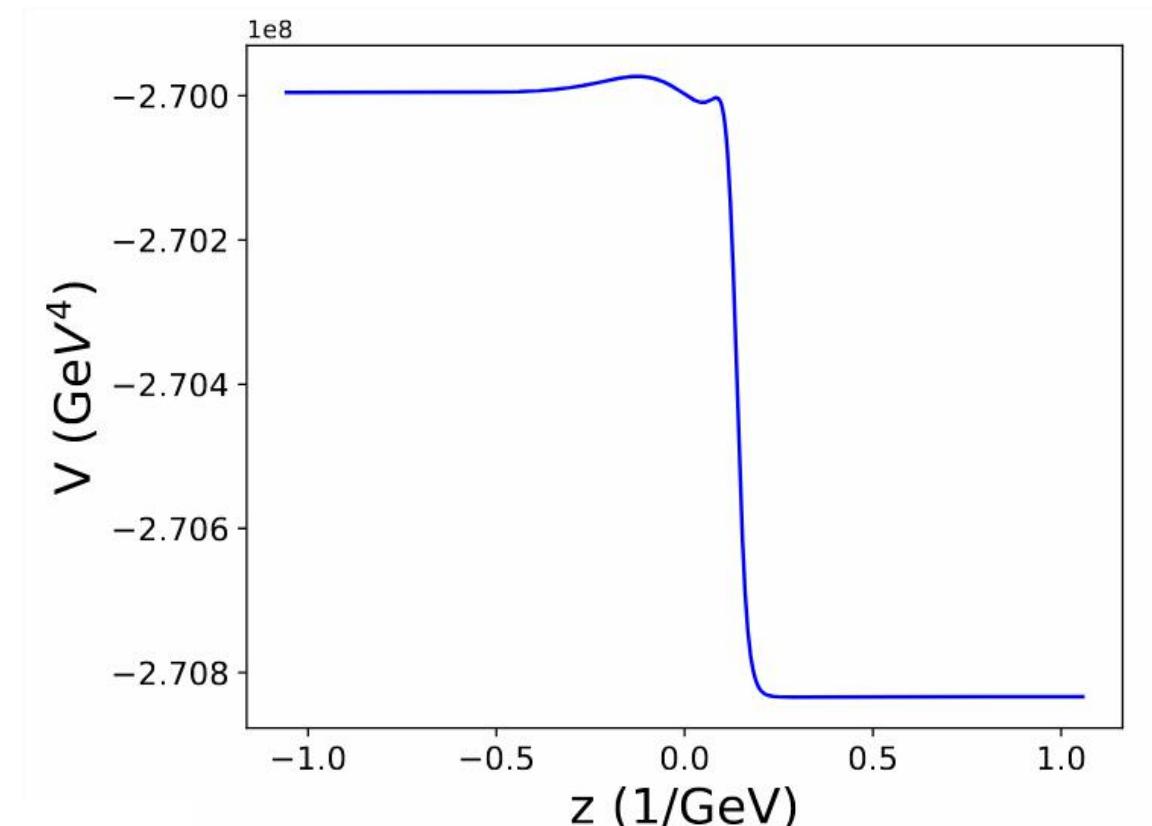


Strange Transitions Profiles

Queen's
UNIVERSITY



Plateau

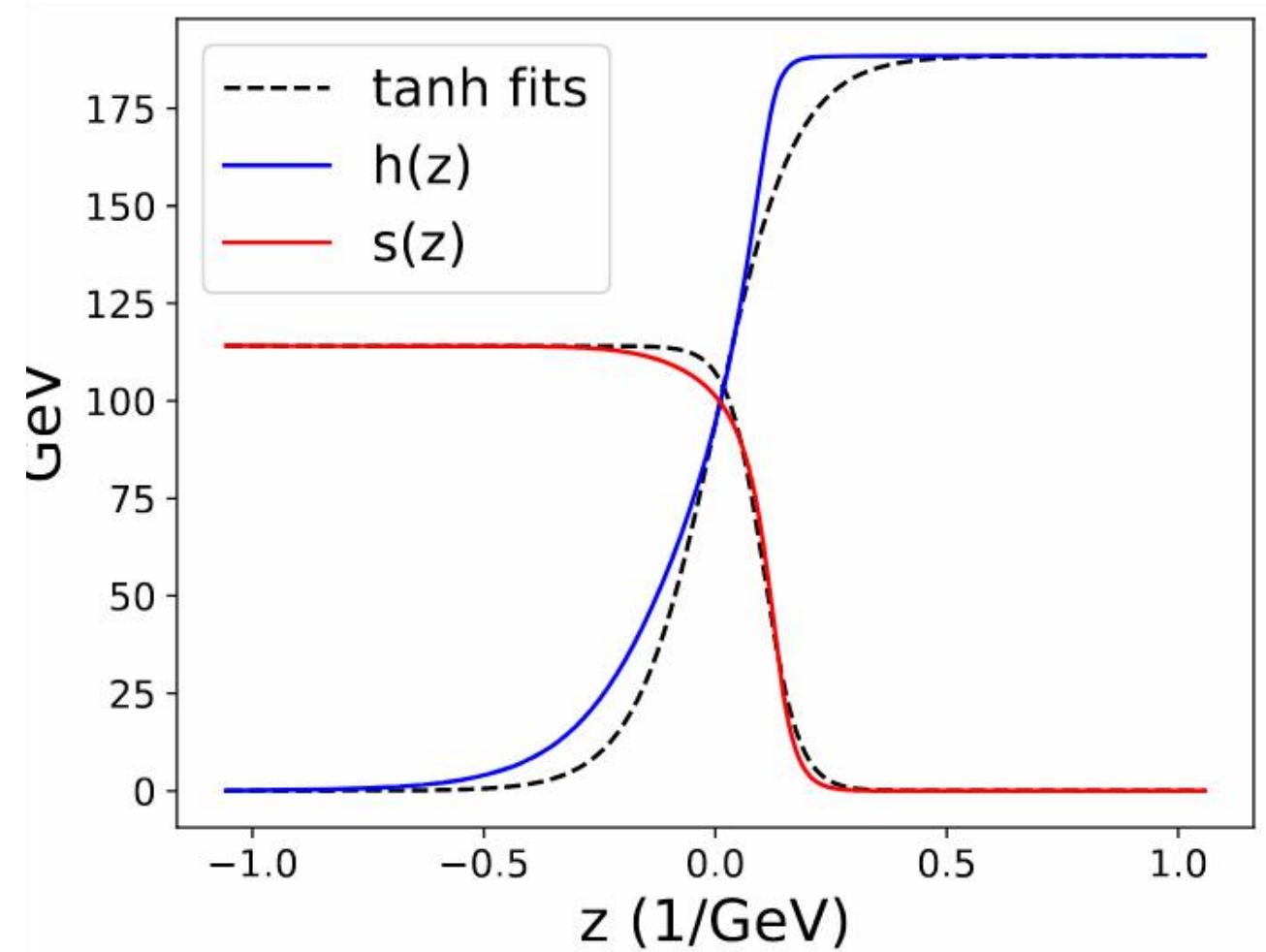


Minima

Strange Transitions

Queen's
UNIVERSITY

- The bubble walls in these transitions have larger deviations from a tanh profile



Conclusions

- **Scalar singlet** can produce bubble walls with velocities as low as $v_w \sim 0.22$

Conclusions

Queen's
UNIVERSITY

- **Scalar singlet** can produce bubble walls with velocities as low as $v_w \sim 0.22$
- We **removed** some **assumptions** previously used
 - tanh ansatz
 - m/T dependence

Conclusions

Queen's
UNIVERSITY

- **Scalar singlet** can produce bubble walls with velocities as low as $v_w \sim 0.22$
- We **removed** some **assumptions** previously used
 - tanh ansatz
 - m/T dependence
- Supercooling parameter $r = (v_n/T_n)/(v_c/T_c)$ strongly **correlates** with **wall velocity**

Conclusions

Queen's
UNIVERSITY

- **Scalar singlet** can produce bubble walls with velocities as low as $v_w \sim 0.22$
- We **removed** some **assumptions** previously used
 - tanh ansatz
 - m/T dependence
- Supercooling parameter $r = (v_n/T_n)/(v_c/T_c)$ strongly **correlates** with **wall velocity**
- Some transition results are **sensitive to IR corrections** to the effective potential

Queen's
UNIVERSITY

Questions?