
# Sub-GeV Dark Matter and U(1)<sub>T3R</sub>

Jason Kumar, University of Hawaii w/ Bhaskar Dutta, Sumit Ghosh PRD 100 075028 (2019) [1905.02692], PRD 102 015013 (2020) [2002.01137], PRD 102 075041 (2020) [2007.16191]

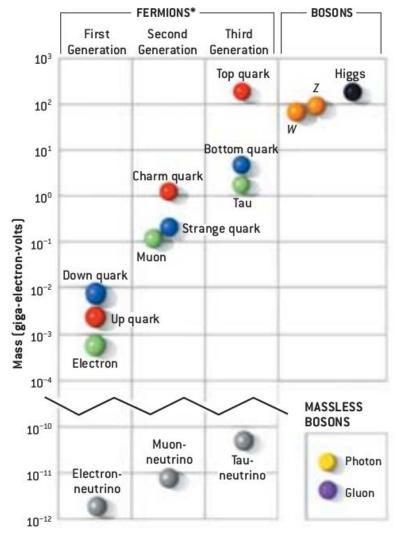


# low-mass dark matter

- there has been recent interest in sub-GeV dark matter
  - evades tight constraints from current direct detection experiments
  - can get the right relic density through a variety of mechanisms in which DM is in thermal contact with SM (SIMPs, ELDERs)
  - most of all, can be explored by new, relatively inexpensive experiments
- but is there any reason for a particle at the MeV scale?






# why MeV?

- analogous to the WIMP miracle
  - mechanism for getting TeV-scale particle to have the correct relic density...
  - ... and a reason why a new TeV scale particle should arise (new physics associated with EWSB)
- reason for having a particle at the MeV scale?...
- ... light flavor physics



# measuring scales

- electroweak scale is a notch on the ruler, and W, Z, h, (WIMPs?) are all around there
- there is another notch on the ruler at MeV scale....
- 1<sup>st</sup> and 2<sup>nd</sup> generation charged particle mass parameters all lie in MeV-GeV range
- can the light flavor sector feed into dark sector?
- our idea → connect DM to light flavor physics through a dark photon/Higgs interaction for right-handed SM fermions



Gordy Kane, Scientific American, May 2003



# new U(1) gauge group

- many scenarios of new physics involve new U(1) gauge symmetry under which SM fermions are charged
- since SM is chiral, need to make sure U(1) anomalies are cancelled
- examples studied recently
  - B-L
  - L<sub>i</sub>-L<sub>j</sub>
  - − secluded U(1)  $\rightarrow$  SM charges induced at one-loop through kinetic mixing
- but we want chiral SM charges, so we use U(1)<sub>T3R</sub> (Pati,Salam 74; Mohapatra,Pati 75)
  - couples to RH fermions, with up-type and down-type having opposite charge
  - originally considered in left-right models, where RH fermions are charged under SU(2)<sub>R</sub>, and U(1)<sub>T3R</sub> is subgroup generated by diagonal generator ( $\sigma_3$ )
  - descends from  $SU(2)_R$ , so manifestly anomaly free
    - anomalies proportional to Tr  $[\sigma_3]$  and Tr $[(\sigma_3)^3] \rightarrow$  vanish
    - won't embed in SU(2)<sub>R</sub>



# $U(1)_{T3R}$ and dark matter

- strategy → charge a generation of right-handed SM fermions under U(1)<sub>T3R</sub>
- in EFT below electroweak scale, the U(1)<sub>T3R</sub> protects fermion masses
  - U(1)<sub>T3R</sub> spontaneously broken down to parity by dark Higgs
  - fermion masses now scale with symmetry-breaking parameter V
- if DM is a fermion also charged under U(1)<sub>T3R</sub>, and odd under surviving parity
  - stabilized by parity (it's the only odd particle)
  - gets Majorana mass proportional to symmetry-breaking parameter (V)
- upshot → two dark sector Majorana fermions with mass scale proportional to V, just as with SM light fermions
  - lightest is stable (DM), heavier particle may still be around
  - if V is small, SM fermion scale explained, and DM naturally sub-GeV



# blessings and curses

- among choices of new U(1), this makes U(1)<sub>T3R</sub> special ...
- ... because symmetry protects fermion masses, dark Higgs must couple to visible sector
- that gives us a few unique phenomenological features
- necessarily have two mediators coupling to SM... dark photon and dark Higgs
- necessarily have reasonably large coupling to dark Higgs and Goldstone mode (longitudinal mode of dark photon)
  - enhancement to production modes
  - but also stronger constraints
  - constrained model... can't run away to weak coupling
  - possible to rule in or out definitively



# game plan

- this is a general framework, but we'll develop an explicit example
- lots of constraints, but open parameter space available
  - upcoming experiments can close most parameter space, but not all
- interesting phenomenological features...
- ... spin-independent, velocity-independent DM-nucleon scattering
  - elastic scattering mediated by dark Higgs
  - inelastic isospin-violating scattering mediated by dark photon
- get correct relic density through (co-)annihilation via intermediate A' or  $\phi'$
- consistent with Planck bounds (p-wave or co-annihilation)



# model

- $q_{R}^{u}$ ,  $q_{R}^{d}$ ,  $\ell_{R}$ , and  $v_{R} \rightarrow Q_{T3R} = \pm 2$ 
  - need not be in same generation
  - anomalies cancel
  - Yukawa terms need φ insertion
- $\langle \phi \rangle = V = (-\mu_{\phi}^2/2\lambda_{\phi})^{\frac{1}{2}}$ 
  - − SM fermion masses  $\propto$  V
  - breaks  $U(1)_{T3R}$  to a  $Z_2$  parity
  - SM particles even under parity
  - dark sector fermion η is odd
- new particles
  - A' (dark photon),  $\phi'$  (dark Higgs)
  - v<sub>s</sub> (mostly v<sub>R</sub>)
  - $\eta_{1,2}$  (Majorana fermion DM)

charges of left-handed component of Weyl spinor

| fiel            | k | $q_R^{\ u}$ | $q_R^{d}$ | e <sub>R</sub> | V <sub>R</sub> | η <sub>L</sub> | $\eta_{R}$ | ф  |
|-----------------|---|-------------|-----------|----------------|----------------|----------------|------------|----|
| q <sub>T3</sub> | ۲ | -2          | +2        | +2             | -2             | 1              | -1         | -2 |

$$\begin{split} -_{\phi} &= -\frac{\lambda_{u}}{\Lambda} \widetilde{H} \phi^{*} \overline{Q}_{L} q_{R}^{u} - \frac{\lambda_{d}}{\Lambda} H \phi \overline{Q}_{L} q_{R}^{d} \\ &- \frac{\lambda_{v}}{\Lambda} \widetilde{H} \phi^{*} \overline{L} v_{R} - \frac{\lambda_{\ell}}{\Lambda} H \phi \overline{L} \ell_{R} \\ &- m_{D} \overline{\eta}_{R} \eta_{L} - \frac{1}{2} \lambda_{L} \phi \overline{\eta}_{L}^{c} \eta_{L} - \frac{1}{2} \lambda_{R} \phi^{*} \overline{\eta}_{R}^{c} \eta_{R} \\ &- \mu_{\phi}^{2} \phi^{*} \phi - \lambda_{\phi} \left( \phi^{*} \phi \right)^{2} + \text{h.c.} \\ \widetilde{H} &\equiv i \sigma_{2} H^{*}, \text{ and we take } \lambda_{L} = \lambda_{R} \equiv \lambda_{M} \end{split}$$



# masses and couplings

- EFT below EWSB scale....
  - $\phi' ff \rightarrow coupling \propto m_f / V$
  - − A'ff → coupling  $\propto Q_f m_{A'} / V$
- η has Maj. and Dirac mass terms
  - $\ take \ m_{_D} \ll \lambda_{_M} V$
  - m<sub>1,2</sub>  $\propto$  V, with small splitting
  - SM and DM masses scale with V
  - if V~1-10 GeV, naturally get sub-GeV SM and DM fermions, as well as sub-GeV A', φ'
- A' coupling to  $\eta_{1,2}$  is off-diagonal
  - inelastic scattering, co-annih.
- A' kinetically mixes with γ, Z

$$M_{\eta} = \begin{bmatrix} \lambda_{M} V & M_{D} \\ M_{D} & \lambda_{M} V \end{bmatrix}$$
$$M_{v} = \begin{bmatrix} 0 & \lambda_{v} V \\ \lambda_{v} V & M \end{bmatrix}$$

$$\mathbf{m}_{A'} = \sqrt{2} g_{_{\mathrm{T3R}}} \mathbf{V}, \qquad \mathbf{m}_{\varphi'} = 2 \lambda_{\varphi}^{_{1/2}} \mathbf{V}$$

$$\begin{split} j^{\mu}_{\text{T3R}} = & \frac{i}{2} \Big( \overline{\eta}_{1} \gamma^{\mu} \eta_{2} - \overline{\eta}_{2} \gamma^{\mu} \eta_{1} \Big) \\ & + j^{\mu}_{\text{T3R}, \varphi'} + j^{\mu}_{\text{T3R}, \text{SM(R)}} \end{split}$$



#### setup

- we can choose q<sup>d</sup><sub>R</sub>, l<sub>R</sub> to be mass eigenstates, since this is technically natural (extra U(1)<sup>2</sup> flavor symmetry)
  - see Batell, Freitas, Ismail, McKeen (1712.10022)
- no symmetry reason to assume q<sup>u</sup><sub>R</sub> a mass eigenstate, but we'll assume for simplicity that dominant coupling is to one mass eigenstate
- so we take the SM fermions charged under U(1)<sub>T3R</sub> to be  $\mu_R$ ,  $u_R$ , and  $d_R$ 
  - flavor diagonal
  - other choices possible, but we'll pick this for simplicity and phenomenology
- assuming perturbativity, we get  $m_{SM}$ ,  $m_{1,2}$ ,  $m_{A'}$ ,  $m_{\varphi'} \lesssim V$
- smaller V  $\rightarrow$  lighter DM, with stronger coupling to SM
- taking V ~ GeV would give us O(1) couplings, but in tension with data
- need some modest hierarchies



#### constraints

Batell, Freitas, Ismail, McKeen (1712.10022); Bauer, Foldenauer, Jaeckel (1803.05466)

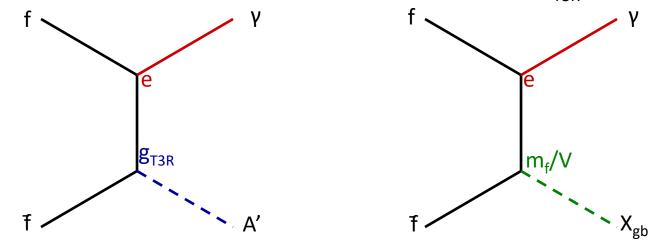
- but lots of constraints on A',  $\phi'$  coupling to SM fermions
  - couplings fixed in terms of masses and V
- main differences between our scenario and others
  - no coupling to  $\bar{v}_L v_L (v_R / v_A \text{ mixing taken small})$ ,
    - suppresses v experiment and astrophysical cooling constraints when  $v_{\text{A}}$  involved
  - no direct coupling to e
    - some e<sup>+</sup>e<sup>-</sup> collider constraints suppressed at one-loop
  - chiral coupling of A' to SM fermions
    - even at weak coupling ( $g_{T3R} \rightarrow 0$ ), longitudinal mode (Goldstone) does not decouple
- $g_{\mu}$ -2 corrections from  $\phi'$  (positive) and A' (negative) running in loop
  - corrections can be tuned against each other or heavy new physics
  - even weakly coupled A' contributes to g-2 via massless Goldstone mode



#### constraints

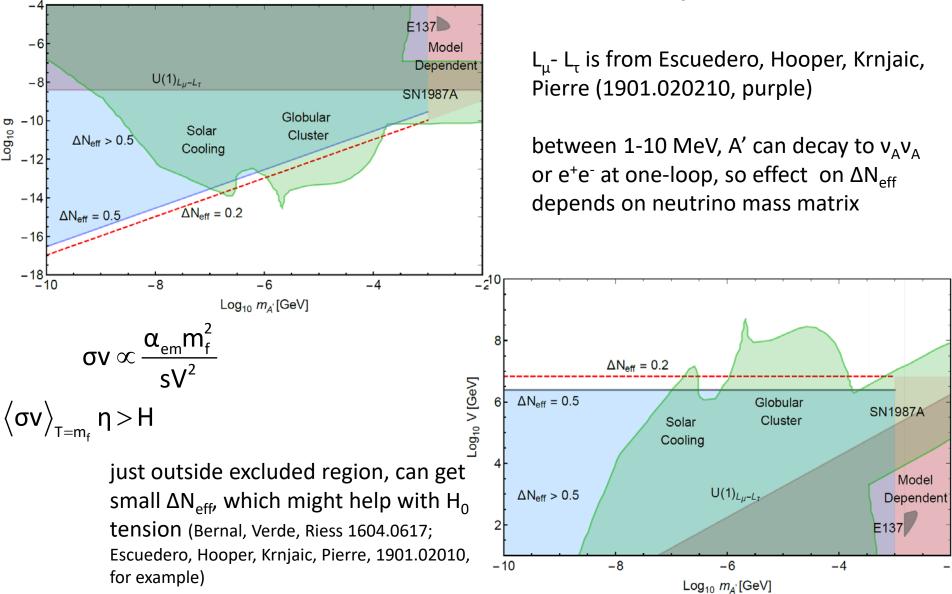
- main constraints
  - solar/SN/Glob. Cluster cooling constraints (production of A',  $\phi' \rightarrow$  invisible)
  - − BBN/CMB → need  $\Delta N_{eff}$  small ( $\leq 0.5$ )
  - e<sup>+</sup>e<sup>-</sup> → 4µ (BaBar), anomalous π, η decay (Crystal Barrel)
  - − fixed target/beam dump/collider exps.: A', $\phi' \rightarrow \gamma\gamma$ , e<sup>+</sup>e<sup>-</sup> at displaced detector
  - − fixed target/beam dump/collider exps.: A', $\phi'$  → missed at nearby detector
  - − fixed target/beam dump/collider exps.: A', $\phi'$  → invisible particles scattering at distant detector
  - fifth force constraints  $\rightarrow$  constrains light mediators
- we'll take V = 10 GeV, and will find restrictions on  $m_{\phi'}$  and  $m_{A'}$ 
  - not much dependence on dark matter mass
  - take neutrino mixing angle small




# $N_{eff}$ and U(1)<sub>T3R</sub>

- generally two ways to avoid light A' or  $\phi'$  contributing too much to N<sub>eff</sub>
- if A' and  $\phi'$  are heavy enough (> 10 MeV), they are gone before neutrino decoupling and don't affect N<sub>eff</sub>
- if coupling is weak enough, then A' and φ' are never in equilibrium with SM → never produced, so also don't affect N<sub>eff</sub>
- for our case, U(1)<sub>T3R</sub> coupled to muons
  - -~ for  $\varphi^\prime$  , coupling  $m_f/V \sim 0.01$  , so never weakly coupled enough
  - for A', coupling  $m_{A'}/V$ , so can make weakly coupled just by making it light
- but U(1)<sub>T3R</sub> case is very different from B-L, L<sub>i</sub>-L<sub>j</sub>, kinetic mixing, etc.
  - no matter how weak the coupling, always produced in the early Universe unless  $V > O(10^6)$  GeV
  - result of coupling to chiral fermions

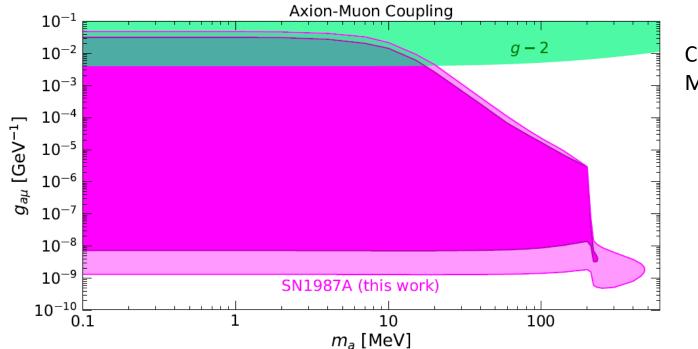



# N<sub>eff</sub> and chiral fermions

- weak coupling, so dominant A' production mode is inverse decay process - ff  $\rightarrow \gamma A'$
- longitudinal modes get an enhancement, E/m<sub>A'</sub>, so A' thermalizes regardless of how small the mass/coupling is
  - enhancement killed if there is only a vector coupling, due to Ward identity
- another way to see it... as  $m_{A'}/V \rightarrow 0$ , U(1)<sub>T3R</sub> becomes a global symmetry
  - massless Goldstone mode couples as m<sub>f</sub>/V, always thermalizes
  - for B-L, L<sub>i</sub>-L<sub>i</sub>, etc., ... no need for Goldstone to couple of charged SM fermions
- we'll consider case where  $2^{nd}$  generation couples to U(1)<sub>T3R</sub>



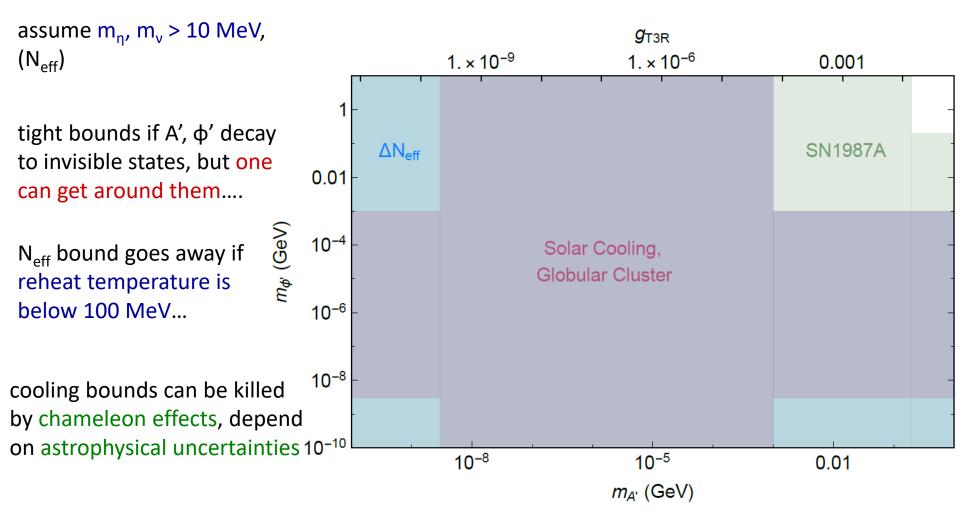



# comparing U(1)<sub>T3R</sub> to $L_{\mu}$ - $L_{\tau}$





# updated bounds from SN1987A


- updated bounds based on direct production from muons in supernovae
- upshot (Bollig, DeRocco, Graham, Janka, 2005.07141; Croon, Elor, Leane, McDermott 2006.13942)
  - new estimates of SN eos indicate higher temperature, so muons produced
  - couple to dark Higgs and Goldstone mode, so they are produced
  - if they decay to invisible states, too much SN cooling

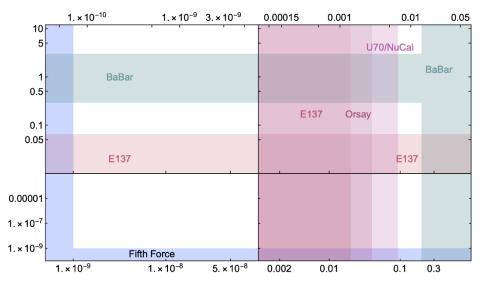


Croon, Elor, Leane, McDermott, 2006.13942

# cosmological and astrophysical bounds

Invisible final states: Astrophysical/cosmological bounds

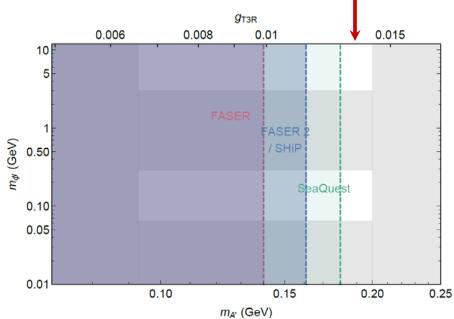



so it's worth it to look at laboratory probes of this region of parameter space also....

# visible decays at displaced detectors

- $\phi' \rightarrow \gamma \gamma$  is always prompt, so no signal at a displaced detector
- $A' \rightarrow \gamma \gamma$  is forbidden (Landau-Yang theorem)
- $A' \rightarrow e^+e^-$  occurs at one-loop though kinetic mixing
  - may dominate branching fraction if A' → ηη, vv (tree-level) are not kinematically allowed
  - may have a long decay length, if kinetic mixing is small enough
- we'll assume no tree-level kinetic mixing
- current and upcoming experiments sensitive to displaced A'  $\rightarrow$  e<sup>+</sup>e<sup>-</sup> if m<sub>A'</sub> is not too large
- larger  $m_{A'} \rightarrow$  larger  $g_{T3R} \rightarrow$  shorter decay length  $\rightarrow$  doesn't reach detector




### constraints for visible states



two-body visible decays not allowed if  $m_{\mbox{\scriptsize A}^\prime} < 1 \mbox{ MeV}$ 

 $m_{A'} = 180-200 \text{ MeV} \rightarrow \text{won't be}$ probed by these experiments

maybe DUNE near detector? repurposing neutrino scattering experiments?



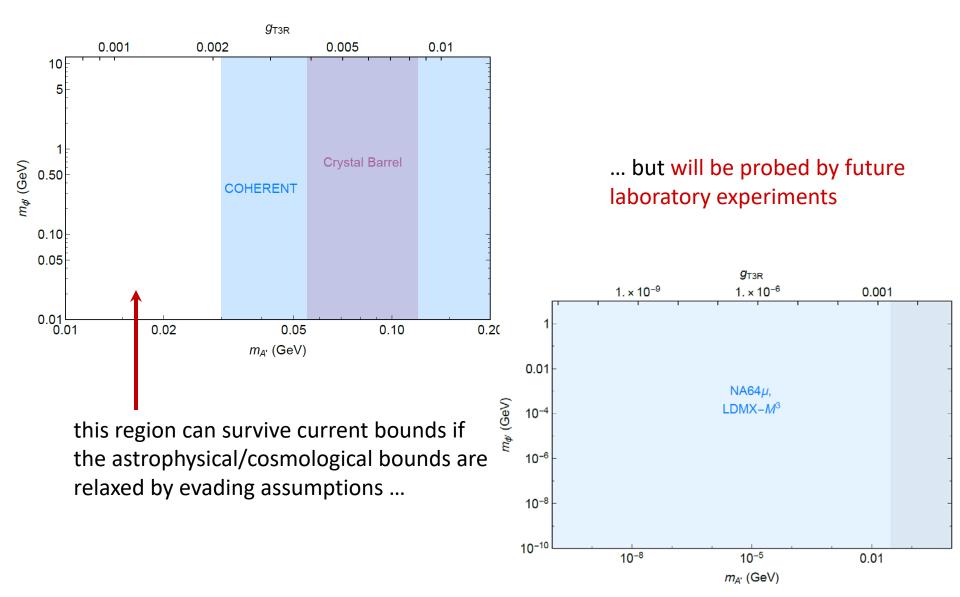


# missing energy at nearby detectors

- two ways to see missing energy
  - tree-level decays to invisible states (if kinematically allowed)
  - delayed decays to visible states (decays outside detector)
- strongest constraints from experiments with muons
  - can probe small  $m_{A'}$  regime with longitudinal polarization coupling
- ΝΑ64μ
- LDMX-M<sup>3</sup>
- basic upshot → they are sensitive to all models with invisible final states, because mediators couple to muons with strength ~ 0.01
  - longitudinal polarization A' has the same coupling (Goldstone)
- for visible states, not competitive



# scattering at distant detectors


- if decays produce invisible states, they can scatter at distant detectors
  - backgrounds from neutrinos produced by stopped pion decay
  - distinguish by energy spectrum (higher energy) and timing (prompt)
- **COHERENT** searches for this....
- will focus on A', since production rates have been computed (pion decay, bremsstrahlung)
- sets bounds....
- but COHERENT also sees a 2.4-3σ excess
  - Dutta, Kim, Liao, Park, Shin, Strigari (1906.10745, 2006.09386)
  - Csl detector (sig. depends on neutron distribution)
  - -~ can explain if  $m_{A^\prime} \sim 30~MeV$
- rate scales as m<sub>A'</sub><sup>6</sup>



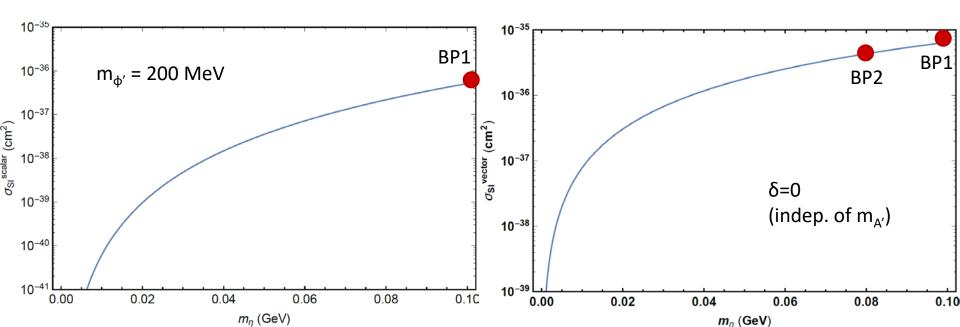
COHERENT CsI detector COHERENT website



# constraints for invisible states






# direct detection

- $\phi' \text{ mediated } \rightarrow$  SI, velocity-independent, elastic, isospin-invariant
- A' mediated  $\rightarrow$  SI, velocity-independent, inelastic, isospin-violating (IVDM)
  - opposite coupling to u and d (thus to p and n)
- mediator mass can be of the same order as momentum transfer
  - not a contact interaction,  $d\sigma/dE_R$  suppressed by  $[1+(2m_A E_R/m_{\phi',A'}^2)]^{-2}$
- current strategies for direct detection of low-mass DM
  - low threshold
  - Migdal effect nuclear recoil results in electrons being kicked out
  - DM upscattered by cosmic ray interactions
    - boosted relativistic DM well above threshold (Bringmann, Pospelov -1810.10543; Dent, Dutta, Newstead, Shoemaker – 1907.03782)
  - DM-electron scattering (one-loop suppressed... not constraining)
- future experiments upcoming



### direct detection

- current constraints (contact interaction, isospin-invariant,  $\delta$ =0)
  - CRESST III  $\rightarrow \sigma_{SI} \sim 10^{-35} \text{ cm}^2$  at m<sub>n</sub> = 200 MeV
  - − CDEX-1B →  $\sigma_{SI}$  ~ 10<sup>-32-34</sup> cm<sup>2</sup> at m<sub>η</sub> = 50-180 MeV
  - − XENON1T →  $\sigma_{SI}$  ~ 10<sup>-29-30</sup> cm<sup>2</sup> over full mass range, up-scattering
    - $\sigma_{SI} \sim 10^{-34} \text{ cm}^2$  at  $m_{\eta}$  = 100 MeV (Migdal effect, 1907.12771)
- benchmark models satisfy all bounds





# thermal relic density

- main relevant annihilation channels are s-channel through  $\varphi'$  or A'
- a thermal relic cross section would naively violate Planck bounds
- a few ways out which we can use
  - p-wave: factor 10 suppression at freeze-out, but much more at recombination
    - kills Planck bounds for  $\phi'$ -mediated case
  - co-annihilation: heavier state around at freeze-out, but decayed before recombination
    - can rescue A'-mediated co-annihilation case, if DM splitting is set right
- if  $m_n < m_{\mu}$ , final states particles will be light ( $\gamma\gamma$ , e<sup>+</sup>e<sup>-</sup>, etc.)
- φ' coupling suppressed by mass of incoming/outgoing particles, or loop
  need to be near resonance to get correct relic density for φ' mediator
- A' coupling not suppressed if A' is not light..., need not be on resonance
  - demand  $\eta_2$  decay before recombination



# two benchmark models

|     | m <sub>A'</sub> (MeV) | m <sub>oʻ</sub> (MeV) | m <sub>η</sub> (MeV) | m <sub>vs</sub> (MeV) | m <sub>vD</sub> (MeV) | <pre>⟨σv⟩ (cm³/s)</pre> | σ <sub>sl</sub> <sup>s</sup> (pb) | $\sigma_{SI}^{V}$ (pb) |
|-----|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-------------------------|-----------------------------------|------------------------|
| BP1 | 95                    | 200                   | 100                  | 10                    | 10-3                  | 3 × 10 <sup>-26</sup>   | 0.51                              | 6.50                   |
| BP2 | 125                   | 104                   | 80                   | 10                    | 10-3                  | 3 × 10 <sup>-26</sup>   | 3.5×10 <sup>-8</sup>              | 4.32                   |

- first benchmark get relic density via  $\phi'$  resonance
  - $a_{\mu}$  corrections (A'/ $\phi$ ') need to be tuned against new physics to 1%
- for second benchmark, get relic density from co-annihilation via A'
  - $\phi'$  corrections to  $a_{\mu}$  small, so need to cancel  $\delta a_{\mu}$  correction from A' against heavy new physics to 1%
  - e<sup>+</sup>e<sup>-</sup> final state (one-loop) can be non-negligible, but rate suppressed if heavier state gone before recombination
    - if splitting small enough (< O(1) MeV), doesn't affect BBN



# upshot

- **sub-GeV dark matter** is a target which experiments are focusing on....
- points to either high-scale new physics with a suppressed coupling to DM, or low-scale new physics with less suppressed couplings
- best-case scenario is a GeV scale dynamically-generated parameter from new physics coupled to DM and SM
  - natural SM coupling is the light-flavor sector
- but the very best-case scenario is in tension with data...
- … need to push the parameter scale up, and the couplings down, to avoid tight constraints → need some tuning (V, g-2)
- but points to a window where we get the correct relic density, and have interesting future prospects for experiments
- inelastic scattering is a generic feature whenever DM is charged under a broken continuous symmetry (mediated by dark gauge boson)

# conclusion

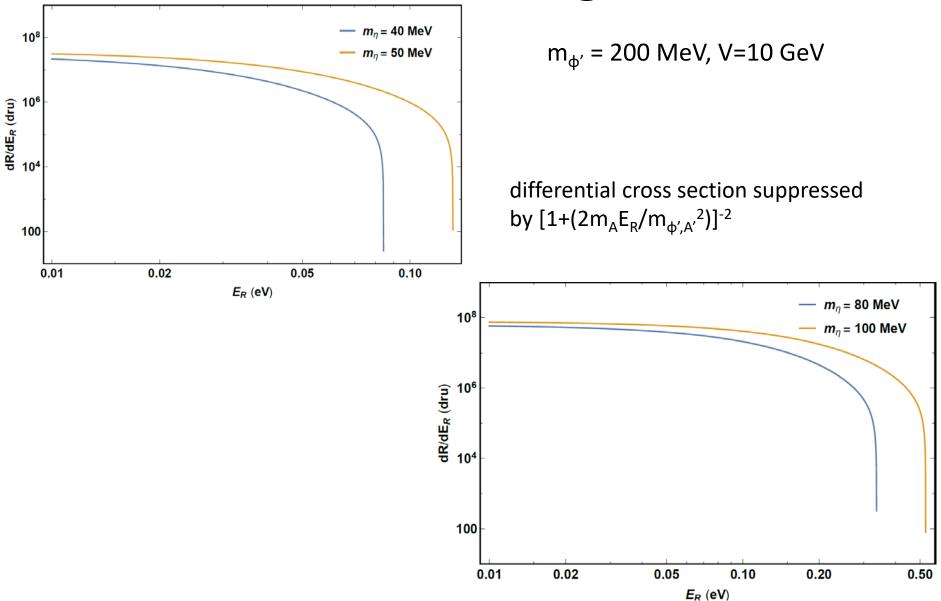
- dark matter experiments are set to probe the MeV-scale, but still need theory guidance
- MeV scale naturally arises in models which connect dark sector to the light flavor sector
- many constraints narrow parameter space, but some room left

- might explain COHERENT excess
- upcoming experiments will probe most of parameter space, but not all

Mahalo!

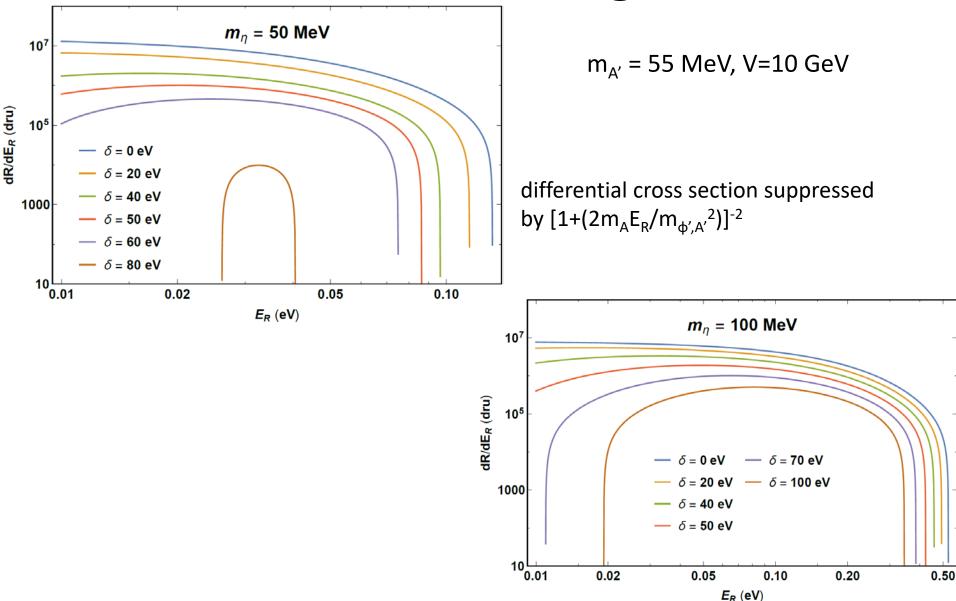


# **Backup Slides**




# electron coupling

- what if the electron is coupled to U(1)<sub>T3R</sub>, not muon?
- basic problem is A'
  - if low-mass, ruled out by constraints on N<sub>eff</sub> (2002.01137)
  - if higher-mass, decays early, but ruled out by atomic parity violation experiments
  - right-handed coupling violates parity
- can potentially fine-tune this away, either by cancelling against new physics, or scaling up V
- other constraints modified by direct coupling to e
- DM-electron scattering becomes more important
- future work to expand on this....




#### elastic scattering rates





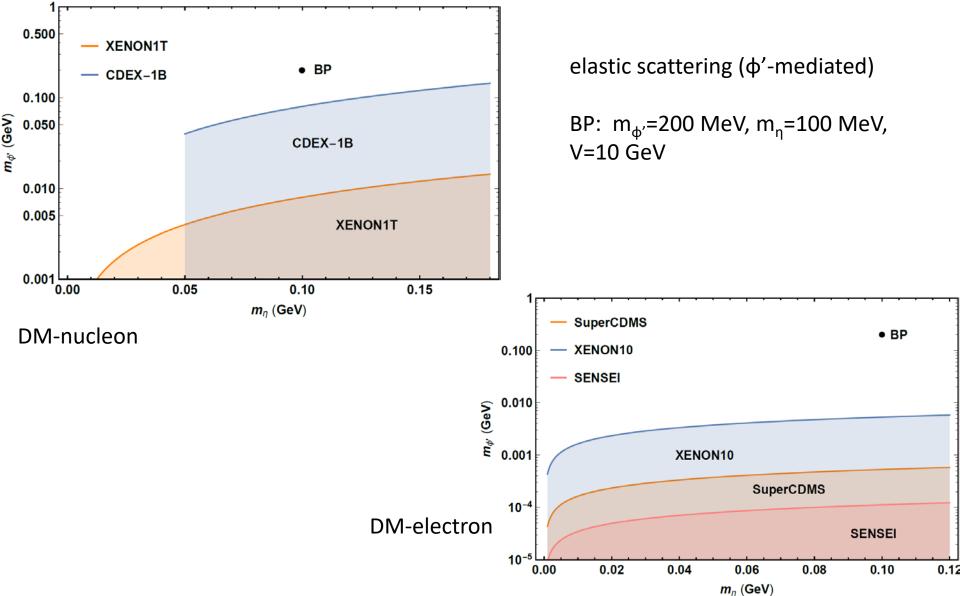
# inelastic scattering rates




#### $\mathcal{O}M$ -nucleon $\sigma_{s_1}$ (zero-mom. trans.) 10<sup>-35</sup> actual differential cross section suppressed 10<sup>-36</sup> by $[1+(2m_A E_R/m_{\phi',A'}^2)]^{-2}$ 10<sup>-37</sup> $\sigma_{sl}^{scalar}$ (cm<sup>2</sup>) $\mu_{\eta N}^2$ $\sigma_{\text{SI(0)}}^{\text{vector}(p,n)}$ 10<sup>-38</sup> $16\pi V^4$ 10<sup>-39</sup> $\delta = 0$ 10-40 10-41 0.00 0.02 0.06 0.08 0.10 V=10 GeV 0.04 m<sub>n</sub> (GeV) 10<sup>-35</sup> $m_{\phi'}$ = 200 MeV, V=10 GeV

$$\sigma_{SI(0)}^{\text{scalar}(p,n)} = \frac{\mu_{\eta N}^2 m_{\eta}^2}{4\pi V^4 m_{\phi'}^4} f_{p,n}^2$$
$$f_{p,n} \propto m_N$$

V = 10 GeV




#### **DM-electron cross sections**





# exclusion contours





# g-2 correction

- correction from  $\phi'$  is positive, but correction from A' is negative
  - vector + axial
- as  $m_{A'} \rightarrow 0$ , coupling goes to zero and transverse polarizations decouple, but longitudinal polarization does not
  - becomes massless Goldstone mode of a global symmetry
  - g-2 correction becomes that of pseudoscalar with Goldstone's coupling
- all corrections go away as  $m_{\varrho} \ll m_{A'}$

$$\delta a_{\ell} = \frac{m_{\ell}^{4}}{16\pi^{2}V^{2}} \int_{0}^{1} \frac{\left(1-x\right)^{2} \left(1+x\right)}{\left(1-x\right)^{2} m_{\ell}^{2} + x m_{\varphi'}^{2}} + \frac{m_{\ell}^{2}}{32\pi^{2}V^{2}} \int_{0}^{1} \frac{2x(1-x)(x-2)m_{A'}^{2} - 2x^{3}m_{\ell}^{2}}{x^{2}m_{\ell}^{2} + (1-x)m_{A'}^{2}}$$



# constraint considerations

- - $\phi'^{(*)} \rightarrow \gamma \gamma$  through a  $\mu$  loop is always open, dominates if  $v_s$  heavy enough
    - kills cooling bounds through off-shell  $\phi'$ , gives beam-dump bounds
  - $A' \rightarrow \gamma \gamma$  forbidden by Landau-Yang theorem
    - cooling through A' has to be killed by heavy A', weak coupling, or suppressed by heavy  $v_s$  (coupling to  $v_A$  is one-loop)
    - A'  $\rightarrow$  e<sup>+</sup>e<sup>-</sup> proceeds through one loop kinetic mixing, but subdominant to v<sub>A</sub> v<sub>A</sub>
      - $~A' \ensuremath{ \rightarrow } \nu_{A} \, \nu_{A}$  allowed because of  $\gamma^{5}$  coupling
      - gives beam dump bounds
- - $\phi'^{(*)} \rightarrow e^+e^-$  tree-level, but suppressed by small coupling, beam dump bounds
  - $\phi'^{(*)} \rightarrow \gamma \gamma$  kills cooling bounds if  $v_s$  is heavy enough to suppress invis. decay
  - A' → e<sup>+</sup>e<sup>-</sup> at tree-level gives beam dump bounds
  - if A' light enough, get cooling bounds from  $A' \rightarrow v_A v_A$