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Background

Gamma-ray bursts (GRBs) are extremely energetic transient
events.
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FORMATION OF A GAMMA-RAY BURST could begin
either with the merger of two neutron stars or
] with the collapse of a massive star. Both these
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Background

What power the GRB jet?




Background

What power the GRB jet?

* The spin-down of a neutron star (NS) with a millisecond
rotation period and a strong magnetic field (millisecond
magnetar)

¢ In the BH accretion systems: the neutrino annihilation or the
Blandford-Znajek (BZ) mechanism

Rosswog et al. 2003

Nathanail et al. 2016




Neutrino-dominated Accretion Flow (NDAFs)

If the accretion rate is very
high ( 0.001 — 10 Mg s7!),
the photons cannot escape
from the accretion disk,
and only neutrinos are
emitted from the disk
surface, named
neutrino-dominated

accretion Flow (NDAF).

T ~ 109 - 10"K,
p~10%-10"%g cm™3

Liu et al. 2016

NDAFs around stellar-mass black holes are plausible candidates for
the central engine of GRBs.



Magnetic Coupling Mechanism

Magnetic
field line

MC mechanisms:

Footpoint 1

Closed magnetic field magnetic
coupling (MC) between the inner
(a) disc and BH can transfer angular
momentum and energy from the
fast-rotating BH to the disc.

The neutrino luminosity and
neutrino annihilation luminosity
of NDAF are both efficiently

(b) enhanced by the MC process.

https://astro.xmu.edu.cn/ry/zrjs/It.htm



NDAFs: BZ + MC mechanisms
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The BZ power:
PBZ o dy, 0

The MC power:
PMC < dy, 0



The radius profiles of the magnetic field strength on

the disc
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and MC magnetic fields partition
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(a) The outer boundary of the MC region for different values of BH spin a. and
power-law index of the magnetic field n under the mapping relation constraint. (b)
The values of 6. and f = Ppz/Pmc vary with a, and n for given Roy = 200, k =0.2. (c)
Similar to (b) except for k = 0.5. The vary of . from 0 to /2 are indicated by
different color.




MNDAF structure

Radial profiles of density and temperature of MNDAF:
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BZ vs Neutrino Annihilation
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The BZ mechanism will compete with the neutrino annihilation
luminosity to trigger jets under the different partitions of the two
magnetic mechanisms.




Gravitational Waves from MNDAFs
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If the MC process is dominant, then the gravitational waves
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originating from the anisotropic neutrino emission will be stronger.




MeV neutrinos from MNDAFs
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The typical peak energy of neutrinos from MNDAFs is about two
times higher than that from NDAFs.




Conclution

The BZ mechanism will compete with the neutrino annihilation
luminosity to trigger jets under the different partitions of the two
magnetic mechanisms.

The typical neutrino luminosity and annihilation luminosity of
MNDAFs are definitely higher than those of NDAFs.

The typical peak energy of neutrino spectra of MNDAFs is higher
than that of NDAFs, but similar to those of core-collapse
supernovae.

Moreover, if the MC process is dominant, then the GWs
originating from the anisotropic neutrino emission will be stronger
particularly for discs with high accretion rates.

Thank you for attention!
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