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Geomagnetic Signal of Millicharged
Dark Matter

Bin Zhu @Tsung-Dao Lee Institute
March 12, 2025
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Main structure in one slide

Objective:
Presenting a novel mechanism utilizing a magnetic signal to detect ultralight
millicharged dark matter, employing the Earth as a cavity (Arza, Gong, Shu, Wu, Zhu,
arXiv:2501.14949)
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Dark Matter Landscape
From Benjamin V. Lehmann
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Why Ultralight Dark Matter

Small Scale Problem: Fuzzy Dark Matter Candidate

Schive, Chiueh, Broadhurst, 1406.6586
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Why Ultralight Dark Matter
Strong CP Problem

▶ Naive estimation: 10−16e cm, Exp:
3× 10−26e cm

▶ The best explanation: New U(1) axial
symmetry, that when broken, cancels
CP violation in the strong sector
(Pecci, Quinn, 1977)

▶ Consequence: New particle, called the
axion (Weinberg, Wilczek, 1978)
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What is Ultralight Dark Matter

We define ultralight dark matter (ULDM) as bosonic DM candidates with m < eV

Discover the world at Yantai University 6 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ULDM Candidates
Many extensions of the Standard Model predict additional massive bosons, Ref.: Chadha-Day et al 2022

Why and What is millicharged scalar dark matter (mCP)?
Discover the world at Yantai University 7 / 29
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Why mCP?

▶ A long-standing question: Is electric charge quantized, mCP is used to testing
whether or not e/3 is the minimal charge.

▶ mCP could have natural link to dark sector (massless dark photon, etc.)

▶ Used for the cooling of gas temperature to explain the EDGES anomaly
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mCP 101

▶ mCP is some relic charged under a dark U(1).

fχ =
ρmCP
ρDM

∼ 0.0001− 1

▶ Through kinetic mixing
(
FµνF

µν + ϵ (F ′)µν F
µν + (F ′)µν (F

′)µν
)

with our own
photon, MCDM acquires an effective charge

qeff = Q ∝ ϵ

▶ Minimal assumptions for interaction, gauge invariance. Most robust constraints.

L = Dµϕ(D
µϕ)∗ −m2

ϕ|ϕ|2 −
1

4
FµνF

µν
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Production Mechanism
How to naturally generate ultralight mCP in the cosmos

▶ Freeze-in works for keV to TeV-scale mCP (X. Chu, T. Hambye and M.H.G.
Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal,
[arXiv:1112.0493])

▶ Misalignment works for sub-eV MCDM
Zachary Bogorada and Natalia Toro, arXiv:2112.11476

ρ0 ∼ 6× 10−30 GeV
cm3

( µ

1eV

)1/2 ( v

1GeV

)2
|π0|2
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Our Detection Approach for mCP

▶ Shielded/Cavity experiments search for ultralight EM-coupled DM
▶ axion: gaγγaE⃗ · B⃗
▶ dark photon: ϵF̃µνF

µν

▶ mCP: Dµϕ = (∂µ + iemAµ)ϕ

▶ Signal scales with size of apparatus

Motived by the scaling law
We use the Earth as our apparatus!

Discover the world at Yantai University 11 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Earth as a transducer
A natural vacuum cavity: Formed between the inner conducting sphere of the Earth and the conducting
ionospheric layer
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mCP Electrodynamics

▶ mCP interacts with the photon via the Lagrangian

L = Dµϕ (Dµϕ)∗ −m2
ϕ|ϕ|2 −

1

4
FµνF

µν

▶ Equation of motion for mCP field in an external electromagnetic field
Aµ =

(
A0,−A⃗

)
∂µF

µν =Jν
m − 2e2mAν |ϕ|2 ≡ Jν

eff ,(
□+m2

ϕ

)
ϕ =− iem∂µAµϕ− 2iem∂µϕAµ

+ e2mAµAµϕ.
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Gauge Invariance

▶ The correct way is to include the mCP current

Jν
m = iem (ϕ∗∂νϕ− ϕ∂νϕ∗) .

▶ The mCP can be solved via equation of motion

□ϕ =− iem∂µAµϕ− 2iem∂µϕAµ + e2mAµAµϕ

▶ For a different gauge choice A′
µ = Aµ + ∂µΛ, correspondingly ϕ′ = ϕ e−iemΛ, so

that

Jµ′
m + Jµ′

eff = Jµ
m + Jµ

eff

Discover the world at Yantai University 14 / 29
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Perturbation Theory
Linearize the EoM

▶ Choose Coulomb gauge
∇⃗ · A⃗ = 0, A0 = 0

▶ Expand the mCP to first order in em: ϕ = ϕ0 + ϕ1 so that(
□+m2

ϕ

)
ϕ0 = 0,

(
□+m2

ϕ

)
ϕ1 = −2iem∇⃗ϕ0 · A⃗

▶ ϕ0 is order O((em)0) and charge symmetric , ϕ1 is order O(em).

ϕ0 =

√
2ρ

mϕ
cos

(
k⃗ϕ · x⃗−mϕt

)
▶ Once ϕ1 is known, we can reduce EoM to

□A⃗ = 2emϕ0 Im
(
∇⃗ϕ1

)
− 2e2mA⃗ϕ2

0

Discover the world at Yantai University 15 / 29
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Effective Current
Just a EM problem with a background current!

In non-relativistic limit, EoM becomes
∇× B − ∂tE = Jeff

When λϕ > Re , the electric field becomes negligible, leaving only a magnetic field
signal.

▶ For dark-photon dark matter,
Jeff = −εm2

A′A′ ∼ O(mA′)

▶ For axion-like dark matter,
Jeff = igaγmaaB0 ∼ O((ma)

0)

▶ For mCP, The effective current from mCPs scales inversely with the square of
their mass, enhancing sensitivity to ultralight mCPs

Jeff = 2e2mA⃗ϕ2
0 ∼ O((mϕ)

−2)
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Experimental Setup
a monochromatic magnetic signal with spatial dependence of a particular vector spherical harmonics

𝐽𝜇 = (0, Ԧ𝐽eff)

𝐴𝜇

𝜙𝜙 𝒜𝜇

𝐵

Ionosphere

Earth

A
mperian Loop

ℎ𝑅𝑒

Ԧ𝐽eff

M
agnetometer

Discover the world at Yantai University 17 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rough Estimate
Why mCP has much better sensitivity than dark photon and axion

▶ Ampere law ∫
B · dℓ =

∫∫
dA · J

▶ Simple dimensional analysis

BR ≈ R2e2m(B0R)ϕ2
0 → B ∼ 100 pT

▶ Rough sensitivity for Vector Magnetoresistive (VMR) sensors

300pT/
√

Hz over the frequency 0.1− 100 Hz
▶ While for dark photon (proportional to mass) and axion (independent to mass)

The lower mass, the better sensitivity for mCP
Our basic motivation for mCP
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Logic Flow

Expand the Vector Potential A into VSH, A⃗ = {Ar, A1, A2}

Derive unknown coefficient from matching into Earth magnetic field, ∇⃗ × A⃗ = B⃗Earth

Contains derivative dA/dr? Integral needs interior BEarth

A1 =
∫
dr′Gℓ (r, r

′) 1
r′2

d
dr′

(r′3B2 (r
′))

Ar = r dA1

dr
+ A1 − rB2

A2 = − r
ℓ(ℓ+1)

BEarth
r

Effective Current: J⃗eff = 2e2mA⃗ϕ
2
0

Amperian Law: ∇⃗ × B⃗Induced = J⃗eff

YesNo
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Computational Framework
Vector potential in the vector spherical harmonics bases

▶ Expand Earth magnetic field and vector potential in terms of VSH

B⃗(x⃗) =
∑
ℓ,m

(
Br(r)Y⃗ℓm(θ, φ) + B1(r)Ψ⃗ℓm(θ, φ) + B2(r)Φ⃗ℓm(θ, φ)

)
A⃗(x⃗) =

∑
ℓ,m

(
Ar(r)Y⃗ℓm(θ, φ) +A1(r)Ψ⃗ℓm(θ, φ) +A2(r)Φ⃗ℓm(θ, φ)

)

Br,1,2 are the known coefficients of Earth magnetic field, Ar,1,2 are our desire.
▶ Vector spherical harmonics

Y ℓm = Yℓmr̂, Ψℓm = r∇Yℓm, Φℓm = r ×∇Yℓm

r̂ is radial unit vector, the other two point tangentially to a constant radius sphere.
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Build Consistent Equations for Unknown Coefficients
In terms of ∇⃗ × A⃗ = B⃗

∇⃗ ×
−→
A =

∑
ℓ,m

(
−
ℓ(ℓ+ 1)

r
A2Y⃗ℓm −

(
dA2

dr
+

A2

r

)
Ψ⃗ℓm +

(
−
Ar

r
+

dA1

dr
+

A1

r

)
Φ⃗ℓm

)
.

Comparison yields this set of first-order ordinary differential equations for the vector potential components

−
ℓ(ℓ+ 1)

r
A2 = Br

dA2

dr
+

A2

r
= B1

dA1

dr
+

A1

r
−

Ar

r
= B2

dAr

dr
+

2Ar

r
− ℓ(ℓ+ 1)

A1

r
= 0

The final equation is the Coulomb gauge ∇⃗ ·
−→
A = 0 , the second a trivial

function ∇ ·
−→
B = 0

Still three unknowns for three equations!

Discover the world at Yantai University 21 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Computational Framework
Solving for the vector potential

▶ The first equation is easy to solve
A

(2)
ℓm = −

r

ℓ(ℓ+ 1)
B

(r)
ℓm(r)

local magnetic field is good enough.
▶ For the last two equations (

r2(rA
(1)
ℓm)′

)′
r3

−
ℓ(ℓ+ 1)

r2
A

(1)
ℓm =

1

r3

(
r3B

(2)
ℓm

)′
▶ Due to Green function

A
(1)
ℓm =

∫
dr′Gℓ(r, r

′)
1

r′3

(
r′3B

(2)
ℓm(r′)

)′
with

Gℓ(r, r
′) = −

1

2ℓ+ 1

{
rℓ−1

r′ℓ−2 , r < r′

r′ℓ+3

rℓ+2 , r > r′

Need interior Earth magnetic field
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Geomagnetic Model

▶ Exterior r > Rcmb, IGRF model

−→
B (x⃗) =

∑
ℓ,m

Cℓm

(
Re

r

)ℓ+2 (
(ℓ+ 1)Y⃗ℓm(θ, φ)− Ψ⃗ℓm(θ, φ)

)

▶ Interior Ricb < r < Rcmb, no model for now. We have to compute it by hand
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Geomagnetic Signal
It is Φ⃗10mode

▶ The external vector potential above the Earth’s surface

A⃗ = −B0Re

(
1.01β

(
Re

r

)3 (
2Y⃗10 − Ψ⃗10

)
−
√

4π

3

(
Re

r

)2

Φ⃗10

)
▶ mCP current

J⃗eff =
2e2mρB0Re

m2
ϕ

(
1.01β

(
Re

r

)3 (
2Y⃗10 − Ψ⃗10

)
−
√

4π

3

(
Re

r

)2

Φ⃗10

)
e−2imϕt

▶ The magnetic field signal at the Earth’s surface

B⃗(t) =
e2mρB0R2

e

m2
ϕ

(√
4π

3

h

Re
Ψ⃗10 −2.02βΦ⃗10

)
e−i2mϕt
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SuperMAG Dataset

▶ 500+ ground-based magnetometers
▶ 50 years of data
▶ 1-minute resolution
▶ Typical frequency: 10−3 − 10−2Hz
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SNIPE Hunt

▶ Magnetometers are located away from
man-made magnetic noise sources:
Hayward, Lewisburg , Oberlin

▶ Measurement campaign over 3 days in
July

▶ Typical frequency: 1 - 1000 Hz band
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Previous Search

▶ Big-bang nucleosynthesis
Particles with small electric charge will
interact with the plasma in the early
universe contributing to ∆Neff

▶ Stellar evolution of Red Giant
Plasma decay process affect the Stellar
evolution

▶ Territorial Experiment
Lamb Shift, Coulomb’s Law, invisible
decay of ortho-positronium
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Result
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10-4

10-3 10-2 10-1 100
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e m
/e
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Accelerators Lamb Shift
↑

Ortho-Positronium
Accelerator Cavities

PVLAS

Red Giant

White Dwarf

BBN

CMB-SZ

SN
198
7A

SNIPE HuntSuperMAG

Van de Graaff

SRFC

ThunderStroms

Atmosphere
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