First Order Electroweak Phase Transition from sub-GeV Physics and Possible Link to Flavor

Hooman Davoudiasl

High Energy Theory Group, Brookhaven National Laboratory

Based on: H.D., 2101.05319

Introduction:

• A mostly "dark" Universe of unknown physics Dark Energy: ∼ 68% ; Dark Matter: ∼ 27%

- "Visible" Universe: ∼ 5%
- Known physics (atoms)
-
- Matter dominates over anti-matter
- Lack of cosmic annihilation signals, CMB, . . .
- Baryon asymmetry established after inflation
- Need a *baryogenesis* mechanism

PDG

• Baryogenesis generally requires three Sakharov conditions:

Sakharov, 1967

- (i) Baryon number violation
- (ii) C and CP violation
- (iii) Departure from equilibrium
- SM does not provide sufficient levels of (ii) and (iii)
- Baryon asymmetry strongly motivates physics beyond SM (BSM)
- Sakharov condition (iii): needed to avoid erasing the asymmetry
- SM could have supplied (iii) if EW Phase Transition (EWPT) was first order
- Yet the measured Higgs mass \approx 125 GeV too large, implies this was not the case
- Motivates BSM in order to have an EW First Order Phase Transition (FOPT)
- It is typically assumed that EW FOPT requires

Critical temperature T_c , Higgs vev v

JodyDole/GettyImages

• SM: thermal contributions of W, Z gauge bosons $E.g.,$ Quiros, 1999

$$
\frac{v(T_c)}{T_c} = \frac{2m_W^3 + m_Z^3}{3\pi\lambda_H v^3} \approx 0.1
$$

• SM Higgs quartic coupling $\lambda_H \approx 0.13$ for $m_H \approx 125$ GeV

 $v = 246$ GeV, $\langle H \rangle = v/\sqrt{2}$

• Since $m_W, m_Z \propto v$, for $\lambda_H \to \sim \lambda_H/10$, a FOPT with $m_H \sim 40$ GeV

Assuming SM gauge couplings

- There have been numerous proposals for realizing an EW FOPT via BSM
- Adding new weak scale states with $\mathcal{O}(1)$ coupling to the Higgs
	- Thermal effects suppressed for states with masses $\gg \langle H \rangle$
- Addition of $(H^{\dagger}H)^{(2+n)}/\Lambda^n$ operators; $\Lambda \sim 1\,$ TeV
	- Allowing for deviations of λ_H to allow a FOPT
- Typically, expect states near weak scale and significant coupling to Higgs

See, e.g., Ramsey-Musolf, 1912.07189, and references therein

This talk^{*}: a different approach, using sub-GeV physics weakly coupled to Higgs

- Basic idea: λ_H starts small before EWPT, grows to its SM value afterwards
- Stability of our model near weak scale suggests small top Yukawa before EWPT
- Conjecture: vanishing Yukawa couplings for all SM fermions before EWSB
- Other works considering alternative approaches include
- Using weakly coupled intermediate mass ≥ 10 GeV scalars: Jeong, Jung, Shin, 1806.02591; Kozaczuk, Ramsey-Musolf, Shelton, 1911.10210
- Via axion-like particles: Jeong, Jung, Shin, 1811.03294

* We will not specify a baryogenesis mechanism, but consider FOPT as a potential key ingredient

A Model: H.D., 2101.05319

$$
V(\phi, H, \eta) = \frac{m_{0\phi}^2}{2} \phi^2 - (\mu_0^2 + 2\mu \phi) H^{\dagger} H + (\lambda_0 + 2\frac{\phi^2}{M^2}) (H^{\dagger} H)^2 + \frac{\kappa}{4} \phi^2 \eta^2
$$

- \bullet $m_{0\phi}^2 >$ 0, $\mu_0^2 >$ 0, $\lambda_0 >$ 0, and 0 $< \mu \ll m_H$
- Scale $M \gg m_H$ descends from some ultraviolet (UV) dynamics
- Scalar η coupled to ϕ with $0 < \kappa \ll 1$, to allow a thermal "slow-roll" for ϕ
- η is initially massless
- Potential V consistent with a softly broken \mathbb{Z}_2 acting on ϕ
- Vacuum solutions with $\partial_h V = \partial_\phi V = \partial_\eta V = 0$; we will set $\langle \eta \rangle = 0$

 $H\to (0,v+h)^T/$ √ 2, with $\langle h \rangle = v = 246$ GeV

• Background value of ϕ at $T=0$

$$
\bar{\phi} = \frac{\mu v^2 M^2}{m_{0\phi}^2 M^2 + v^4}
$$

Induced by the tadpole term $\propto \phi H^{\dagger}H$

• To get SM values, $\mu_H \approx 89$ GeV and $\lambda_H \approx 0.13$, at $T = 0$

$$
\mu_H^2 = \mu_0^2 + 2\mu \bar{\phi}
$$
 and $\lambda_H = \lambda_0 + 2\frac{\bar{\phi}^2}{M^2}$ (A)

- Parameterize $\lambda_0 = \varepsilon \lambda_H$, with $\varepsilon \lesssim 0.1$
- Higgs and ϕ mix after EWSB, governed by mixing angle

$$
\theta \approx \frac{2v^2}{m_H^2} \left(\frac{2\bar{\phi}v}{M^2} - \frac{\mu}{v} \right)
$$

 \bullet For $|\theta|\ll 1$, $m_H\approx$ √ $\overline{2}\,\mu_H$ (approximately SM) and lightest scalar mass

$$
m_{\phi}^2 \approx m_{0\phi}^2 + \frac{v^4}{M^2} - \theta^2 \, m_H^2
$$

• We choose benchmark values; fix $\bar{\phi}$ from (A) above

$$
\varepsilon = 0.1 \quad \text{and} \quad M = 4.0 \times 10^3 \text{ TeV}
$$

• With $\bar{\phi}$ fixed $\Rightarrow m_{0\phi}$ and θ functions of μ

• (I) Stable potential: $m_{0\phi}^2 > 0$ (II) triggering symmetry breaking: $\mu_0^2 > 0$

(I) and (II)
$$
\Rightarrow \frac{\overline{\phi} v^2}{M^2} < \mu < \frac{\mu_H^2}{2\overline{\phi}}
$$
 (B)

• For benchmark values: \vert 5 MeV $\lesssim m_\phi \lesssim 10$ MeV

Thermal Evolution

- Degenerate minimum at critical temperature $T_c \approx \frac{T_0}{\sqrt{1-\frac{C^2}{C^2}}}$ $1-E^2/(\lambda_0 D)$
- Barrier disappears at $T = T_0$

$$
T_0^2 = \frac{m_{0H}^2 - 8Bv_0^2}{4D} \; ; \; B = \frac{3(2m_W^4 + m_Z^4 - 4m_t^4)}{64\pi^2 v^4}
$$
\n
$$
D = \frac{2m_W^2 + m_Z^2 + 2m_t^2}{8v^2} \; ; \; E = \frac{2m_W^3 + m_Z^3}{6\pi v^3}
$$

- <u>Initial values</u> ($\langle \phi \rangle = 0$): $m_{0H} =$ √ $\overline{2} \mu_0$, and $v_0^2 = \mu_0^2$ $_0^2/\lambda _0$

- $m_t = 0$ (vanishing top Yukawa) chosen here, for vacuum stability as explained later
- $T_c = 0$ not sensible at upper limit in (B) ; choose a slightly smaller upper limit

3.7 MeV $\leq \mu \leq 4.0$ MeV \Rightarrow 38 GeV $\leq T_c \leq 90$ GeV and 37 GeV $\leq T_0 \leq 87$ GeV

- Underlying assumption: FOPT is achieved for $\phi \approx 0$
- Thermal effects mediated by η that are $\propto \kappa$ pin ϕ near origin

 ϕ/M at T_c (solid) and T_0 (dashed), for benchmark parameters and $\kappa = 10^{-4}$

- Numerical inspection: ϕ/M remains small down to $T \sim 10$ GeV
- One can show that η and ϕ in thermal equilibrium

 \bullet $m_\eta\sim \kappa^{1/2}\bar{\phi}\sim 10$ TeV; η can decay fast, *e.g.* via $\eta F_{\mu\nu}F^{\mu\nu}/M_\eta$, with $M_\eta\lesssim 10^{18}$ GeV

UV Stability

- FOPT through small $\lambda_0 \sim 0.01$ can lead to instability
- This is a quantum (running) effect from $y_t \sim 1$ top Yukawa

$$
16\pi^2 \frac{d\lambda_0}{dt} = 24\lambda_0^2 + \lambda_0(12y_t^2 - 9g^2 - 3g'^2) - 6y_t^4 + \frac{9}{8}g^4 + \frac{3}{8}g'^4 + \frac{3}{4}g^2g'^2
$$

- $\{g, g'\}$ are $\{SU(2)_L, U(1)_Y\}$ gauge couplings, respectively
- $t \equiv \ln Q/Q_0$, with $Q_0 = 100$ GeV reference scale
- With our benchmark choices λ_0 goes negative ("instability") for $Q \gtrsim 170$ GeV
- Too close to $T_c \sim 100$ GeV to allow for a reasonable theory
- If $y_t \ll 1$ initially one could avoid this problem
- After FOPT, dynamics of ϕ could allow for y_t to rise to SM value

• We introduce

$$
O_t = \frac{\phi}{M_t} H^* \epsilon \, \overline{Q}_L t_R + \text{H.C.} \qquad [Q_L = (t, b)_L; t_R \, \mathbb{Z}_2 \text{ odd}]
$$

$$
\Rightarrow y_t^{\text{SM}}(Q_0) = y_{0t}(Q_0) + \frac{\overline{\phi}}{M_t}
$$

• Initial dim-4 top Yukawa $y_{0t} = 0$; for y_t^{SM} $_{t}^{\mathsf{SM}}(Q_{0})\approx 0.92\,\rightarrow\,M_{t}\approx 1.1\times 10^{3}\,$ TeV

Running of λ_0 , for $\lambda_0(Q_0) = 0.1\lambda_H$, with $Q_0 = 100$ GeV

Flavor from ϕ

- \mathbb{Z}_2 odd t_R not fundamentally different from other fields in our model
- We thus extend ϕ -induced Yukawa coupling to all fermions; schematically

$$
O_f = \frac{\phi}{M_f} H \,\bar{F}_L f_R + \text{H.C.}
$$

F: $SU(2)_L$ doublet containing flavor f

- In general, one needs a Yukawa matrix defined by flavor-dependent coefficients

• Assuming vanishing initial Yukawa couplings

$$
y_f^{\text{SM}}(Q_0) = \frac{\bar{\phi}}{M_f} \quad \Rightarrow \quad M_f = \frac{y_t^{\text{SM}}(Q_0)}{y_f^{\text{SM}}(Q_0)} M_t
$$

- After mass matrix diagonalization
- Direct coupling of the fermion f to ϕ : $\xi_f = \langle H \rangle / M_f$

$$
\begin{array}{c|c|c|c|c|c} \hline \varepsilon & \kappa & M \ (\text{TeV}) & M_t \ (\text{TeV}) \\ \hline 0.1 & 10^{-4} & 4.0 \times 10^3 & 1.1 \times 10^3 \end{array}
$$

Benchmark input parameters

- Softly broken \mathbb{Z}_2 : loop-induced Yuakwa couplings
- For top quark, with our reference parameters

$$
\delta y_t(Q_0) \sim \frac{\mu}{16\pi^2 M_t} \ln(M_t/Q_0) \sim 10^{-10},
$$

- Completely negligible, does not affect stability
- Smaller for lighter fermions

⊕: \mathbb{Z}_2 soft-breaking interaction $\propto \mu$; ■: dimension-5 O_f operator

Couplings of ϕ to Fermions

• Including mixing, the total coupling $\bar{\xi}_f \phi \bar{f}_L f_R + \text{H.C.}$ given by

$$
\left| \bar{\xi}_f \equiv \xi_f + \theta \, y_f^{\text{SM}} \right|
$$

- One can show that in our model $\theta y_f \sim \xi_f$
- For electron Yukawa we find $M_e \approx 3.3 \times 10^{11}$ GeV
- Assuming Dirac neutrinos with y^{SM}_{ν} $_{\nu}^{\mathsf{SM}}(Q_0) \sim 10^{-12} \Rightarrow M_{\nu} \sim 4 \times 10^{18}$ GeV
- Close to, but below, Planck mass $M_P \sim 10^{19}$ GeV
- All flavor can arise from ϕ dynamics coupled to scales $\sim 10^3$ TeV M_P
- Alternatively, the UV scale $\sim 10^3$ TeV, with hierarchic ϕ couplings to fermions
- For benchmark values, ϕ decay length typically macroscopic

$$
c\,\tau_\phi \approx \frac{8\pi}{\bar\xi_e^2\,m_\phi} \approx 8.4\times 10^3\,\,\text{km} \left(\frac{8.4\times 10^{-20}}{\bar\xi_e^2}\right)\!\!\left(\frac{7\,\,\text{MeV}}{m_\phi}\right) \qquad (m_\phi < 2 m_\mu)
$$

c speed of light and $y_e \approx 2.9 \times 10^{-6}$ SM electron Yukawa coupling

• Generally expect ϕ to escape as missing energy in laboratory experiments

• For purposes of illustration, let $m_{\phi} = 7$ MeV (typical for our parameters)

- Allowed region between dashed lines
- G. Krnjaic, 2015
- Revised SN bounds

Dev, Mohapatra, Zhang, 2020

- BBN sets lower limit, dotted line
- We get $\bar{\xi}_t \approx 2.6 \times 10^{-4}$; allowed by known bounds See, e.g., Foroughi-Abari, Ritz, 2020

From G. Krnjaic, Phys. Rev. D 94, 073009 (2016), 1512.04119

Low Energy Tests

- \bullet ϕ can appear as missing energy in rare meson decays
- Example: KOTO, measuring $K_L \rightarrow \pi^0 \bar{\nu} \nu$, to $\sim 10 \%$
- SM prediction for branching fraction: $3.4 \pm 0.6 \times 10^{-11}$ Cirigliano, Ecker, Neufeld, Pich, Portoles, 2011; Egana-Ugrinovic, Homiller, Meade, 2019
- A few anomalous events were observed by KOTO Shinohara (KOTO), 2020
- ϕ -top coupling in the 1-loop penguin diagram for $K_L \rightarrow \pi^0 \phi$ can mimic the events
- ϕ -top coupling $\sim 2 \times 10^{-4}$ and $m_{\phi} \lesssim 50$ MeV could yield a 2σ explanation Egana-Ugrinovic, Homiller, Meade, 2019; Kitahara, Okui, Perez, Soreq, Tobioka, 2019

• KOTO has since concluded events are consistent with background Ahn et al. (KOTO), 2020

- Future KOTO measurements can potentially probe $\bar{\xi}_t \lesssim 10^{-5}$
- Generically, also expect gravitational waves from the FOPT
- Possibly detectable by e.g. LISA See, for example, Caprini et al., 2019

Summary

• FOPT, a possible key element in weak scale baryogenesis, not feasible in SM with $m_H \approx 125$ GeV

• Typically need to extend SM with particles near weak scale with $\mathcal{O}(1)$ couplings to get FOPT

• We propose that a smaller initial Higgs quartic could result in a FOPT

• Proposal: dynamics of a weakly coupled sub-GeV scalar can yield the late time SM Higgs potential

• Stability of our scenario suggests top Yukawa coupling initially small or vanishing

• Natural extension to all fermions: flavor turns on after EWSB, via operators suppressed by scales $\sim 10^3$ TeV (top) to near Planck mass (Dirac neutrinos)

• The sub-GeV scalar is typically long-lived, can show up as missing energy in rare meson decays

- KOTO, for example, can probe this scenario in $K_L \to \pi^0 +$ "missing energy"
- Generically also expect primordial gravitational waves from weak scale FOPT
- Potential signal for future observatories, like LISA