

Search for Dark Matter in 2HDMS at LHC and Future Lepton Colliders

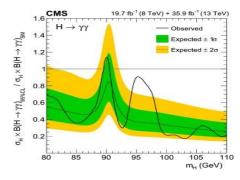
Juhi Dutta, Jayita Lahiri, · **Cheng Li,** Gudrid Moortgat-Pick, Sheikh Farah Tabira, Julia Ziegler

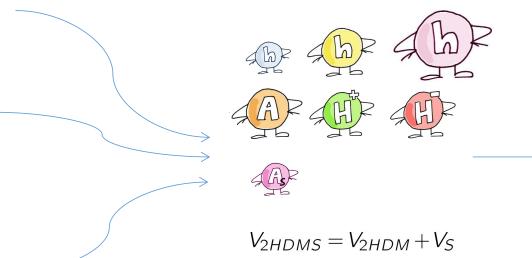
Shanghai, Aug 22

Based on [arXiv:2308.05653]

[arXiv:2504.14529]

Why 2HDM+complex singlet?


$$V_{SM} = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$


Explain:

- cold dark matter (DM)

- 95 GeV excess (at LHC and LEP)

Reference model to obtain different **DM mass** scenarios, which lead to various signal topologies at future colliders

* $\gamma\gamma$ channel at CMS (~2.9 σ), bb channel at LEP (~2 σ), investigated in S. Heinemeyer, C. Li, et al, 2021, arxiv:2112.11958

2HDMS Type II, Higgs Sector Potential

[Notation as in: Baum and Shah, arXiv: 1808.02667]

Type II, Couplings to Fermions

Down- type quarks	Leptons	Up-type quarks
Φ ₁	Φ ₁	Φ2

$$V = V_{2HDM} + V_S$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2}$$

$$+ \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1})$$

$$+ \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$
for this study:

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c.\right] \qquad \text{for this study:}$$

$$+ \left[\frac{\lambda_{1}^{\prime \prime}}{24} S^{4} + h.c.\right] + \left[\frac{\lambda_{2}^{\prime \prime}}{6} (S^{2} S^{\dagger} S) + h.c.\right] + \frac{\lambda_{3}^{\prime \prime}}{4} (S^{\dagger} S)^{2}$$

$$+ S^{\dagger} S[\lambda_{1}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}) + h.c.]$$

V2HDMS Symmetries

$ \Phi_{j} \stackrel{U(1)}{\to} e^{i\theta} \Phi_{j} \Phi_{j}^{\dagger} \stackrel{U(1)}{\to} e^{-i\theta} \Phi_{j}^{\dagger} $	avoids charge-parity violation
	avoids flavour changing neutral currents
m ₁₂ ²)	. 1.11
$\Phi_j \xrightarrow{Z_2'} \Phi_j$ $S \xrightarrow{Z_2'} -S$	stabilization of DM

2HDMS Type II, Higgs Sector Potential

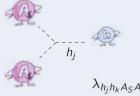

[Notation as in: Baum and Shah, arXiv: 1808.02667]

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + \rho_{i} + i\eta_{i}) \end{pmatrix} \qquad \langle \Phi_{i} \rangle = \begin{pmatrix} 0 \\ \frac{v_{i}}{\sqrt{2}} \end{pmatrix}$$

$$S = \frac{1}{\sqrt{2}}(v_{S} + \rho_{S} + iA_{S}) \qquad \langle S \rangle = \frac{v_{S}}{\sqrt{2}}$$

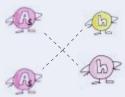
$$DM$$
Candidate

DM Candidate Properties: massive electrically neutral colourless stable



This model is different from 2HDMa, where the pseudoscalar is the DM

2HDMS Type II, Higgs Sector Potential


[Notation as in: Baum and Shah, arXiv: 1808.02667]

DM to Higgs portal couplings

$$\lambda_{h_{j}h_{k}A_{S}A_{S}} = \frac{\partial^{4}V}{\partial h_{j}\partial h_{k}\partial A_{S}\partial A_{S}}$$

$$= -i[(\lambda'_{1} - 2\lambda'_{4})R_{j1}R_{k1} + (\lambda'_{2} - 2\lambda'_{5})R_{j2}R_{k2} - \frac{1}{2}(\lambda''_{1} - \lambda''_{3})R_{j3}R_{k3}]$$

$$\begin{split} \lambda_{h_{j}h_{k}A_{S}A_{S}} &= \frac{\partial^{4}V}{\partial h_{j}\partial h_{k}\partial A_{S}\partial A_{S}} \\ &= -i[(\lambda'_{1} - 2\lambda'_{4})R_{j1}R_{k1} + (\lambda'_{2} - 2\lambda'_{5})R_{j2}R_{k2} - \frac{1}{2}(\lambda''_{1} - \lambda''_{3})R_{j3}R_{k3}] \end{split}$$

DM mass:

$$m_{A_S}^2 = \frac{\partial^2 V}{\partial A_S^{\dagger} \partial A_S} |_{\Phi_1 = \langle \Phi_1 \rangle} |_{\Phi_2 = \langle \Phi_2 \rangle, S = \langle S \rangle}$$
$$= -(2m_S'^2 + v_S^2(\frac{\lambda_1''}{3} + \frac{\lambda_1''}{3}) + 2(\lambda_4' v_1^2 + \lambda_5' v_2^2))$$

$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\alpha_{1,2,3}) \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix}$ $v = \sqrt{v_1^2 + v_2^2}$

$\tan(\beta) = \frac{v_2}{v_1}$

$$\tilde{\mu}^2 = \frac{m_{12}^2}{\sin\beta\cos\beta}$$

$$\lambda_{14}' = \lambda_1' - 2\lambda_4'$$

$$\lambda_{25}' = \lambda_2' - 2\lambda_5'$$

$$\lambda_{13}'' = \lambda_1'' - \lambda_3''$$

2HDMS Basis Change

Interaction Basis Parameters:

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \tan\beta, v_S, m_S^{2\prime},$$

$$\lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'' = \lambda_2'', \lambda_3''$$

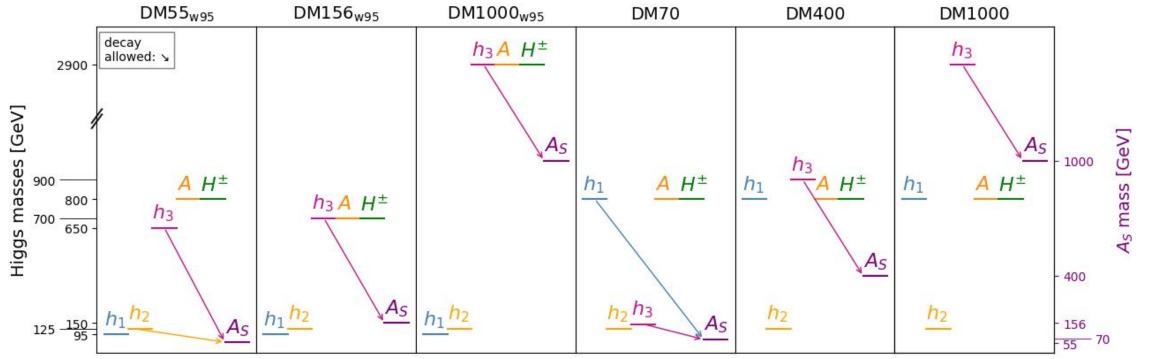
Mass Basis Parameters:

$$m_{h_1}, m_{h_2}, m_{h_3}, m_A, m_{A_S}, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3,$$

$$\tan \beta, v_S, \tilde{\mu}^2, \lambda'_{14}, \lambda'_{25}, \lambda''_{13}$$

Benchmark scenarios

- Light
- Intermediate
- Heavy


 $10 \text{ GeV} < m_{DM} < 100 \text{ GeV}$ $100 \text{ GeV} < m_{DM} < 1 \text{ TeV}$ $m_{DM} > 1 \text{ TeV}$

Dark Matter (DM) Phenomenology (Relic Density, Indirect Detection, Direct Detection)

SARAH **SPheno** micrOMEGAs Collider Phenomenology (HL-LHC, Future Lepton Colliders)

Pythia Delphes MadAnalysis WHIZARD Madgraph


Constraints: - Theoretical: bfb. unitarity - Experimental: HiggsBounds, Planck, LUX-ZEPLIN, Fermi-LAT *including 95 GeV excess

DM Phenomenology

Relic Density (=amount of DM left in universe today), constraints from Planck: Ωh²≈0.12

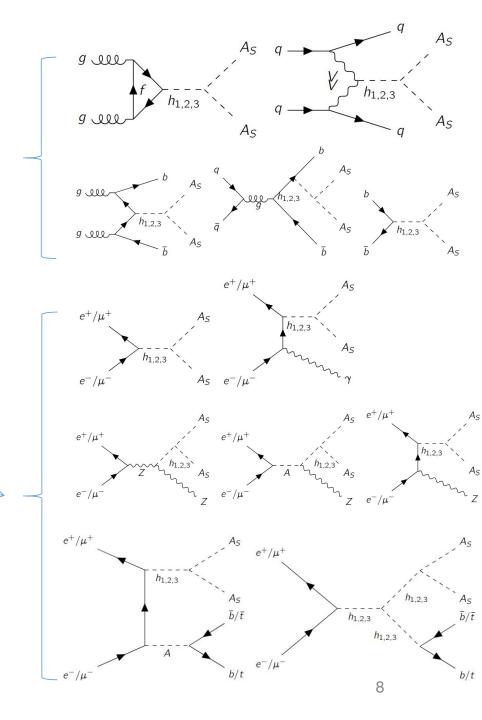
Direct Detection CS (=elastic scattering of DM on nucleon), constraints from LUX-ZEPLIN (LZ)

Indirect Detection CS (=annihilation of two DM particles), constraints from Fermi-LAT

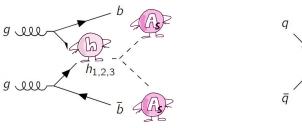
Benchmark	Ωh^2	σ_{pA_S}/pb	σ_{nA_S}/pb	$\sigma_{A_S A_S \to XX} / \frac{\text{cm}^3}{\text{s}}$	$BR(h_3 \rightarrow A_S A_S)$	$BR(h_2 \rightarrow A_S A_S)$	$BR(h_1 \rightarrow A_S A_S)$
DM55 _{w95}	0.11	4.21×10^{-12}		1.98×10^{-28}	3.81×10^{-9}	0.0199	-
DM156 _{w95}	1.61×10^{-4}	3.903×10^{-11}	4.160×10^{-11}	3.875×10^{-29}	0.69	2	-
DM1000 _{w95}	0.111	3.323×10^{-11}	3.369×10^{-11}	2.045×10^{-26}	0.0359	=	-
DM70	0.113	8.938×10^{-16}	2.651×10^{-13}	2.13×10^{-28}	0.99934	=	1.80×10^{-4}
DM400	0.106	4.960×10^{-11}	5.101×10^{-11}	3.67×10^{-26}	0.82203	-	
DM1000	0.117	8.263×10^{-11}	8.464×10^{-11}	2.018×10^{-26}	0.005	_	e=

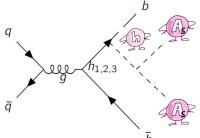
• The larger DM relic density, the lower interaction strength between DM and other particles

Collider Phenomenology

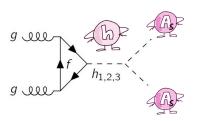

Hadron Collider (HL-LHC)

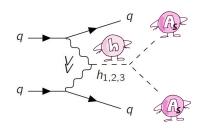
e+e- Colliders (ILC, FCC-ee, CEPC, CLIC)


μ+μ- Collider

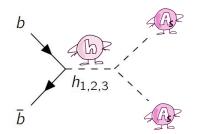


Collider Phenomenology, HL-LHC


Process	Production cross-section (fb) at $\sqrt{s} = 14 \text{ TeV}$		
	$\mathrm{DM55_{w95}}$	$\mathrm{DM156_{w95}}$	DM70
$GGF(h_2 \to A_S A_S)$	533.9	-	19.29×10^3
$GGF(h_3 \to A_S A_S)$	-	0.015	-
$VBF(h_2 \to A_S A_S)$	54.33	-	2.72×10^{3}
$VBF(h_3 \to A_S A_S)$	-	0.134	0.0022
BBH $((b\bar{b}h_2 \to A_S A_S))$	21.6	-	0.137
BBH $((b\bar{b}h_3 \to A_S A_S))$	-	47.24	-


Process	Production cross-section (fb) at $\sqrt{s} = 14 \text{ TeV}$		
	$\mathrm{DM400} \mid \mathrm{DM1000} \mid \mathrm{DM1000}_{\mathrm{w95}}$		
$GGF(h_3 \to A_S A_S)$	0.013	6.35×10^{-7}	4.5×10^{-6}
$VBF(h_3 \to A_S A_S)$	0.0008	_	-
$BBH(h_3 \to A_S A_S)$	0.007	_	-

- DM55 has low significance at hardon collider
- DM70 has large cross-section via offshell h₁₂₅

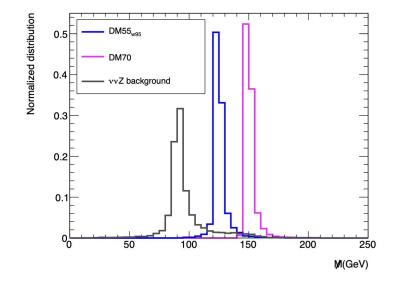


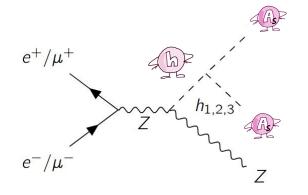
GGF + Mono jet

Benchmark	Significance
$\mathrm{DM55_{w95}}$	0.30σ
DM70	0.55σ

VBF

Benchmark	Significance
DM70	1.94σ

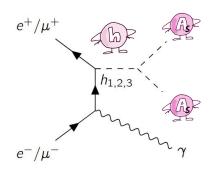

BBH

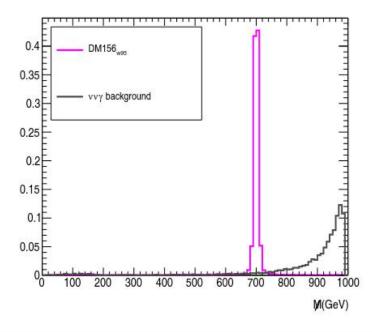

Benchmark	Significance
$\mathrm{DM156_{w95}}$	1.95σ

Collider Phenomenology, e+e- Colliders

Z+MET

Benchmark	Production cross-section (fb)		
	at $\sqrt{s} = 250 \text{ GeV}$ at $\sqrt{s} = 500 \text{ GeV}$ at $\sqrt{s} = 1 \text{ TeV}$		
$\mathrm{DM55_{w95}}$	4.42	1.1	0.24
DM70	0.33	0.15	0.035
$\nu\bar{\nu}Z$ background	503	491	950

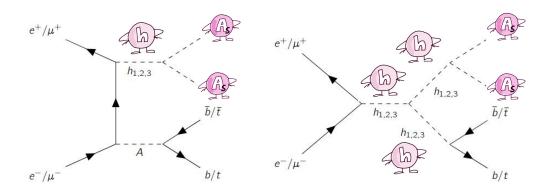

Benchmark	\sqrt{s}	Cut	Significance
$\mathrm{DM55_{w95}}$	$250~{\rm GeV}$	M > 100 GeV	$11\sigma \ (1ab^{-1})$
DM70	$250~{\rm GeV}$	M > 130 GeV	$3\sigma \ (3ab^{-1})$
$\mathrm{DM55_{w95}}$	$500 \; \mathrm{GeV}$	M > 100 GeV and $M < 150 GeV$	$3.6\sigma \ (1ab^{-1})$
DM70	$500 \; \mathrm{GeV}$	M > 140 GeV and $M < 190 GeV$	$1.5\sigma \ (3ab^{-1})$
$\mathrm{DM55_{w95}}$	1 TeV	M > 120 GeV and $M < 250 GeV$	$2.4\sigma \ (3ab^{-1})$
DM70	1 TeV	M > 120 GeV and $M < 250 GeV$	$0.36\sigma \ (3ab^{-1})$

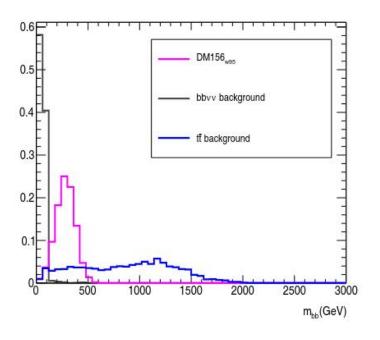

• e+e- colliders can be sensitive to the light DM scenarios with h₁₂₅ as mediator

Collider Phenomenology, µ+µ- Collider

Mono photon

Benchmark	Production cross-section (fb)at $\sqrt{s} = 1 \text{ TeV}$
$\mathrm{DM156_{w95}}$	0.23
$\nu\nu\gamma$ background	2.45

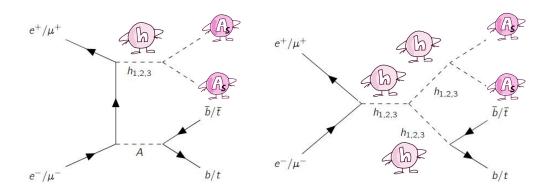


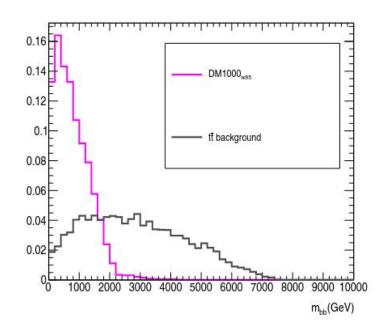

Benchmark	Cut	Significance
$\mathrm{DM156_{w95}}$	690 GeV < M < 710 GeV	$3\sigma \ (3ab^{-1}), \ 5.3\sigma \ (10ab^{-1})$

Collider Phenomenology, µ+µ- Collider

bb+MET

Benchmark	Production cross-section (fb)			
	at $\sqrt{s} = 3 \text{ TeV}$	at $\sqrt{s} = 10 \text{ TeV}$		
$\mathrm{DM156_{w95}}$	0.48	0.063		
$b\bar{b}\nu\nu$ background	758	1.3		
$t\bar{t}$ background	20	1.7		


Benchmark	Cut	Significance
$\mathrm{DM}156_{\mathrm{w}95}$	$100 \text{ GeV} < m_{bb} < 500 \text{ GeV}$	$6.3\sigma~(3ab^{-1})$


Muon collider can be sensitive to the intermediate DM scenarios

Collider Phenomenology, µ+µ- Collider

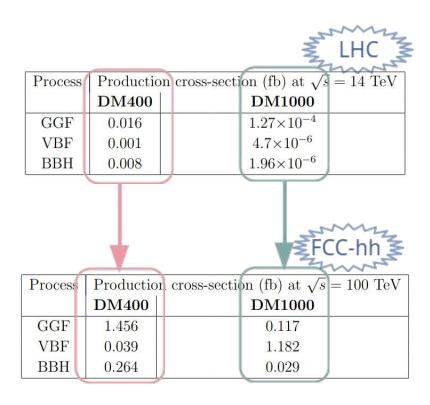
tt+MET

Benchmark	Production cross-section (fb) at $\sqrt{s} = 10 \text{ TeV}$
$\mathrm{DM1000_{w95}}$	0.027
$t\bar{t}$ +MET background	1.66

Benchmark	Cut	Significance
$\mathrm{DM1000_{w95}}$	$m_{bb} < 2 \text{ TeV}$	$2.9\sigma \ (10ab^{-1})$

Muon collider can be sensitive to the heavy DM scenarios, while the DM mediator is at 3 TeV

Collider Phenomenology, Challenging Scenarios



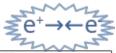
DM400

Final state	Production cross-section (fb) at muon collider			
	at $\sqrt{s} = 3 \text{ TeV}$	at $\sqrt{s} = 10 \text{ TeV}$		
γ +MET	5.3×10^{-7}	4.9×10^{-8}		
Z+MET	1.1×10^{-5}	1.5×10^{-6}		
$b\bar{b}+{ m MET}$	2.7×10^{-3}	4.5×10^{-3}		
$t\bar{t}$ +MET	3.7×10^{-3}	8.9×10^{-3}		

DM1000

Final state	Production cross-section (fb) at muon collider		
	at $\sqrt{s} = 3 \text{ TeV}$	at $\sqrt{s} = 10 \text{ TeV}$	
γ +MET	3.5×10^{-9}	1.3×10^{-10}	
Z+MET	4.4×10^{-8}	2.2×10^{-6}	
$b\bar{b}+{ m MET}$	3.7×10^{-8}	2.0×10^{-5}	
$t\bar{t}$ +MET	7.8×10^{-9}	3.7×10^{-5}	

The scenario with the singlet Higgs as the DM mediator would be difficult for lepton colliders



- 6 BPs (light, intermediate, heavy)
- Hardon, electron, muon colliders
- Best prospects for light BPs at e+e-colliders
- Best prospects for intermediate and heavy BPs at $\mu^+\mu^-$ colliders
- Challenging scenarios probably require much higher energy (e.g. FCC-hh)

Process	Benchmark	Significance
GGF	DM55 _{w95}	0.30σ
GGF	DM70	0.55σ
VBF	DM70	1.94σ
BBH	DM156 _{w95}	1.95σ

е	Significance	\sqrt{s}	Benchmark	Final State	
.)	$11\sigma \ (1 ab^{-1})$	250 GeV	DM55 _{w95}	Z+MET	
)	$3\sigma \ (3 ab^{-1})$	250 GeV	DM70	Z+MET	
$^{1})$	$3.6\sigma \ (1 ab^{-1})$	500 GeV	DM55 _{w95}	Z+MET	
$^{1})$	$1.5\sigma \ (3 ab^{-1})$	500 GeV	DM70	Z+MET	
$^{1})$	$2.4\sigma \ (3ab^{-1})$	1 TeV	DM55 _{w95}	Z+MET	
$^{\cdot 1})$	$0.36\sigma (3ab^{-1})$	1 TeV	DM70	Z+MET	
	3.6σ (1 ab ⁻ 1.5σ (3 ab ⁻ 2.4σ (3 ab ⁻	500 GeV 500 GeV 1 TeV	DM55 _{w95} DM70 DM55 _{w95}	Z+MET Z+MET Z+MET	

Final State	Benchmark	\sqrt{s}	Significance	
$b\bar{b}+MET$	DM156 _{w95}	3 TeV	$6.3\sigma \ (3 ab^{-1})$	
$\gamma+MET$	DM156 _{w95}	1 TeV	$3\sigma \ (3ab^{-1}), \ 5.3\sigma \ (10ab^{-1})$	
$t\bar{t}+MET$	DM1000 _{w95}	10 TeV	$2.9\sigma \ (10 ab^{-1})$	

Backup

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{H^\pm}	χ^2
$95.4\mathrm{GeV}$	$125.09\mathrm{GeV}$	$650\mathrm{GeV}$	$800\mathrm{GeV}$	$800\mathrm{GeV}$	1.26
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$	
$55.596\mathrm{GeV}$	0.0020912	0.00074611	-0.025735	2	
v_S	$ ilde{\mu}$	α_1	α_2	α_3	
$300\mathrm{GeV}$	$650\mathrm{GeV}$	-1.932	1.272	1.484	

Table 23: The benchmark point $DM55_{w95}$ in the mass basis.

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{H^\pm}	χ^2
$95.4\mathrm{GeV}$	$125.09\mathrm{GeV}$	$700\mathrm{GeV}$	$700\mathrm{GeV}$	$700\mathrm{GeV}$	0.422
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$	
$156\mathrm{GeV}$	12.753	-0.31351	-2.6747	6.6	
v_S	$ ilde{\mu}$	α_1	α_2	α_3	
$239.86\mathrm{GeV}$	$700\mathrm{GeV}$	1.4661	1.1920	-1.5989	

Table 24: The benchmark point $DM156_{w95}$ in the mass basis.

m_{h_1}	m_{h_2}	m_{h_3}	m_A	$m_{H^{\pm}}$	χ^2
$95.4\mathrm{GeV}$	$125.09\mathrm{GeV}$	$2950\mathrm{GeV}$	$2950\mathrm{GeV}$	$2950\mathrm{GeV}$	2.13
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$	
$1000\mathrm{GeV}$	21.231	0	-1.4153	5	
v_S	$ ilde{\mu}$	α_1	α_2	α_3	
$10005\mathrm{GeV}$	$2949.29\mathrm{GeV}$	-1.769	1.250	1.569	

Table 25: The benchmark point $\mathbf{DM1000_{w95}}$ in the mass basis.

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{H^\pm}
$800\mathrm{GeV}$	$125.09\mathrm{GeV}$	$150\mathrm{GeV}$	$800\mathrm{GeV}$	$800\mathrm{GeV}$
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$
$70\mathrm{GeV}$	-0.10783	0.063127	-0.47818	1.3728
v_S	$ ilde{\mu}$	α_1	α_2	α_3
$219.05\mathrm{GeV}$	$751.54\mathrm{GeV}$	-0.60016	0.042445	-0.054807

Table 26: The benchmark point DM70 in the mass basis.

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{H^\pm}
$800\mathrm{GeV}$	$125.09\mathrm{GeV}$	$900\mathrm{GeV}$	$800\mathrm{GeV}$	$800\mathrm{GeV}$
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$
$400\mathrm{GeV}$	0.077784	0.036923	-0.42725	2.1309
v_S	$ ilde{\mu}$	α_1	α_2	α_3
$587.17\mathrm{GeV}$	$755.39\mathrm{GeV}$	-0.41245	-0.0086501	-0.0055431

Table 27: The benchmark point DM400 in the mass basis.

m_{h_1}	m_{h_2}	m_{h_3}	m_A	m_{H^\pm}
$800\mathrm{GeV}$	$125.09\mathrm{GeV}$	$2900\mathrm{GeV}$	$800\mathrm{GeV}$	$800\mathrm{GeV}$
m_{A_S}	$\lambda_1' - 2\lambda_4'$	$\lambda_2' - 2\lambda_5'$	$\lambda_1'' - \lambda_3''$	$\tan \beta$
$1000\mathrm{GeV}$	0.32873	0.21320	-0.41541	1.3414
v_S	$ ilde{\mu}$	α_1	$lpha_2$	α_3
$2271.3\mathrm{GeV}$	$768.14\mathrm{GeV}$	-0.54917	0.036530	-0.056095

Table 28: The benchmark point DM1000 in the mass basis.

Backup, Collider Pheno, HL-LHC

$$M^2 = (p_{in} - p_{out})^2$$

$$\sigma^{w_i} = \frac{\sigma^{4f} + w_i \sigma^{5f}}{1 + w_i}$$

$$w_i = \ln(\frac{m_{h_i}}{m_b}) - 2$$

Benchmark	Cross-section after cuts (fb)	
$\mathrm{DM156_{w95}}$	0.357	
SM Background		
$b\bar{b}Z$	18.3	
$bar{b} uar{ u}$	13.46	
$t ar{t}$	66.46	
Z + j	2.04	
hZ	0.012	
Total Background	100.27	

Table 8: The cross-sections for the signal and backgrounds after applying the cuts **E1-E4** as discussed in the text for signal-background distinction for BBH for HL-LHC at an integrated luminosity of 3000 fb⁻¹.

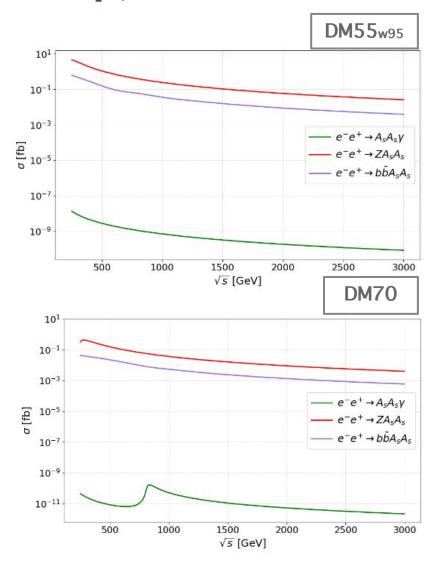
Gluon Fusion

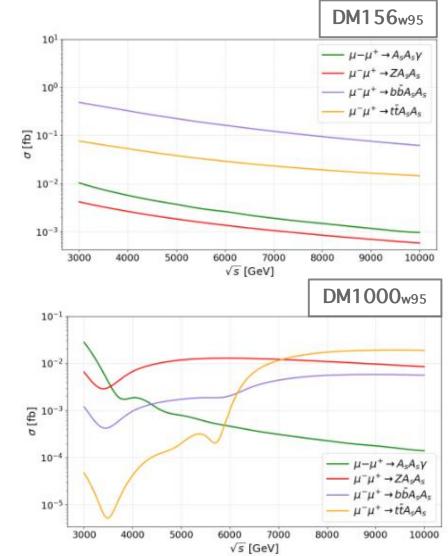
We consider the final state mono-jet + MET from the gluon fusion production channel. For the collider analyses, we use the following cuts [70]:

- C1: The final state consists of up to four jets with $p_T > 30$ GeV and $|\eta| < 2.8$.
- C2: We demand a large $\rlap/E_T > 250$ GeV.
- C3: The hardest leading jet has $p_T > 250$ GeV with $|\eta| < 2.4$.
- C4: We demand $\Delta\Phi(j, \cancel{E}_T) > 0.4$ for all jets and $\Delta\Phi(j, \cancel{E}_T) > 0.6$ for the leading jet.
- C5: A lepton-veto is imposed for electrons with $p_T > 20$ GeV and $|\eta| < 2.47$ and muons with $p_T > 10$ GeV and $|\eta| < 2.5$.

The SM background of 7.07 pb is obtained from the mono-jet $+ \cancel{E}_T$ search studied in Ref. [71].

Vector Boson Fusion


We consider the final state two forward-jets + MET from the vector boson fusion production channel. For the collider analyses, we use the following cuts [72]:


- **D1**: The final state consists of at least two jets with $p_T(j_1) > 80$ and $p_T(j_2) > 40$ GeV and $\Delta\Phi(j_i, \not\!E_T) > 0.5$.
- **D2**: We demand $\eta(j_1j_2) < 0$ and $\Delta \Phi j_1j_2 < 1.5$.
- **D3**: We demand $|\Delta \eta|_{jj} > 3.0$.
- D4: The invariant mass of the two forward jets is required to be large, i.e, $M_{ij} > 600$ GeV.
- **D5**: We demand $\rlap/E_T > 200$ GeV.
- **D6**: Furthermore, a lepton veto is imposed for electrons with $p_T > 20$ GeV or muons with $p_T > 10$ GeV.

$b\bar{b}$ Higgs associated production

- E1: The final state consists of two b jets and no photons or leptons. We demand $\Delta R(b_1, b_2) > 0.4$, $p_T(b_1) > 150$ GeV and $p_T(b_2) > 100$ GeV.
- E2: We demand a large missing transverse momenta (MET) $\rlap/E_T > 200$ GeV to reduce SM background.
- E3: We demand the invariant mass of the $b\bar{b}$ pair (as seen in Fig. 5) is outside the Z (76 GeV $< M(b\bar{b}) < 105$ GeV) or SM Higgs mass window (115 GeV $< M(b\bar{b}) < 135$ GeV) to remove background contributions from on-shell Z or Higgs bosons.
- E4: Further, we demand $M(b\bar{b}) > 200$ GeV to reduce SM background contributions.

Backup, Collider Pheno, Lepton colliders

Backup

$$0 = \frac{\partial V}{\partial \Phi_{1}} \Big|_{\substack{\Phi_{1} = \langle \Phi_{1} \rangle \\ \Phi_{2} = \langle \Phi_{2} \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_{11}^{2} v_{1} - m_{12}^{2} v_{2} + \frac{\lambda_{1}}{2} v_{1}^{3} + \frac{\lambda_{345}}{2} v_{1} v_{2}^{2} + (\frac{\lambda'_{1}}{2} v_{1} + \lambda'_{4} v_{1}) v_{S}^{2}]$$

$$(A.1a)$$

$$0 = \frac{\partial V}{\partial \Phi_{2}} \Big|_{\substack{\Phi_{1} = \langle \Phi_{1} \rangle \\ \Phi_{2} = \langle \Phi_{2} \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_{22}^{2} v_{2} - m_{12}^{2} v_{1} + \frac{\lambda_{2}}{2} v_{2}^{3} + \frac{\lambda_{345}}{2} v_{1}^{2} v_{2} + (\frac{\lambda'_{2}}{2} v_{2} + \lambda'_{5} v_{2}) v_{S}^{2}]$$

$$(A.1b)$$

$$0 = \frac{\partial V}{\partial S} \Big|_{\substack{\Phi_{1} = \langle \Phi_{1} \rangle \\ \Phi_{2} = \langle \Phi_{2} \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_{S}^{2} v_{S} + m_{S}^{\prime 2} v_{S} + \frac{\lambda''_{1}}{12} v_{S}^{3} + \frac{\lambda''_{2}}{3} v_{S}^{3} + \frac{\lambda''_{3}}{4} v_{S}^{3} + \frac{\lambda''_{3}}{4} v_{S}^{3} + \frac{v_{S}}{2} (\lambda'_{1} v_{1}^{2} + \lambda'_{2} v_{2}^{2}) + v_{S} (\lambda'_{4} v_{1}^{2} + \lambda'_{5} v_{2}^{2})].$$

$$(A.1c)$$

$$R = \begin{pmatrix} c_{\alpha_1} c_{\alpha_2} & s_{\alpha_1} c_{\alpha_2} & s_{\alpha_2} \\ -s_{\alpha_1} c_{\alpha_3} - c_{\alpha_1} s_{\alpha_2} s_{\alpha_3} & c_{\alpha_1} c_{\alpha_3} - s_{\alpha_1} s_{\alpha_2} s_{\alpha_3} & c_{\alpha_2} s_{\alpha_3} \\ s_{\alpha_1} s_{\alpha_3} - c_{\alpha_1} s_{\alpha_2} c_{\alpha_3} & -c_{\alpha_1} s_{\alpha_3} - s_{\alpha_1} s_{\alpha_2} c_{\alpha_3} & c_{\alpha_2} c_{\alpha_3} \end{pmatrix}$$

$$\begin{split} &m_{12}^2 = \tilde{\mu}^2 \cdot \sin\beta \cos\beta \\ &\lambda_1 = \frac{1}{v^2 \cos^2\beta} \Big(\Sigma_{i=1}^3 m_i^2 R_{i1}^2 - \tilde{\mu}^2 \sin^2\beta \Big), \\ &\lambda_2 = \frac{1}{v^2 \sin^2\beta} \Big(\Sigma_{i=1}^3 m_i^2 R_{i2}^2 - \tilde{\mu}^2 \cos^2\beta \Big), \\ &\lambda_3 = \frac{1}{v^2} \Big(\frac{1}{\sin\beta \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i1} R_{i2} - \tilde{\mu}^2 + 2 m_{H^\pm}^2 \Big), \\ &\lambda_4 = \frac{1}{v^2} \Big(m_A^2 + \tilde{\mu}^2 - 2 m_{H^\pm}^2 \Big), \\ &\lambda_5 = \frac{1}{v^2} \Big(-m_A^2 + \tilde{\mu}^2 \Big), \\ &\lambda_1' = \frac{1}{2} \Big(\frac{1}{vv_S \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i1} R_{i3} + \lambda_{14}' \Big), \\ &\lambda_2' = \frac{1}{2} \Big(\frac{1}{vv_S \sin\beta} \Sigma_{i=1}^3 m_i^2 R_{i2} R_{i3} + \lambda_{25}' \Big), \\ &\lambda_4' = \frac{1}{4} \Big(\frac{1}{vv_S \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i1} R_{i3} - \lambda_{14}' \Big), \\ &\lambda_5' = \frac{1}{4} \Big(\frac{1}{vv_S \sin\beta} \Sigma_{i=1}^3 m_i^2 R_{i2} R_{i3} - \lambda_{25}' \Big), \\ &\lambda_1'' = \frac{3}{4v_S^2} \Big(\Sigma_{i=1}^3 m_i^2 R_{i3}^2 + \frac{v_S^2}{2} \lambda_{13}'' \Big), \\ &\lambda_2'' = \lambda_1'', \\ &\lambda_3'' = \frac{3}{4v_S^2} \Big(\Sigma_{i=1}^3 m_i^2 R_{i3}^2 + \frac{5v_S^2}{6} \lambda_{13}'' \Big), \\ &m_S'' = - \Big(\frac{1}{2} m_{A_S}^2 + \frac{1}{4} \Sigma_{i=1}^3 m_i^2 (R_{i3}^2 + R_{i1} R_{i3} \frac{v \cos\beta}{v_S} + R_{i2} R_{i3} \frac{v \sin\beta}{v_S} \Big) \\ &- \frac{v^2}{4} \Big(\lambda_{14}' \cos^2\beta + \lambda_{25}' \sin^2\beta \Big) + \frac{v_S^2}{8} \lambda_{13}'' \Big) \end{split}$$