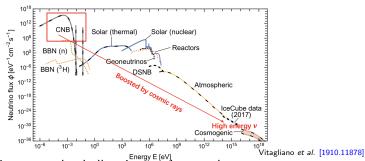
Impact of coherent scattering on relic neutrinos boosted by cosmic rays

Jiajie Zhang

Sun Yat-Sen University


In collaboration with Alexander Sandrock, Jiajun Liao, and Baobiao Yue Based on arXiv:2505.04791

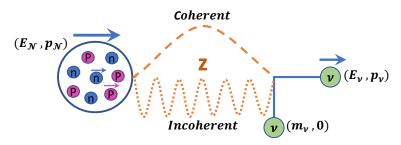
Dark Matter and Neutrino Focus Week TDLI, 8/22/2025

Table of Contents

- Research background and motivation
- Calculating the flux of boosted CvB on Earth
- 3 Constraints on $C\nu B$ overdensity
- 4 Summary

Research background and motivation

- The $C\nu B$ is extremely challenging to detect; the strongest current constraint on the local overdensity is $\eta < 9.7 \times 10^{10}$ (90% CL) from relic-neutrino capture at KATRIN.
- Ultra-high-energy cosmic rays (UHECR) can up-scatter the $C\nu B$ to very high energies first proposed by Hara & Sato in the 1980s and revisited by Herrera *et al.* in 2024. Hara & Sato [PTP.62.969; PTP.65.477], Herrera *et al.*


[2402.00985]

Earlier works all neglected the contribution from coherent elastic neutrino–nucleus scattering ($CE\nu NS$).

Jiajie Zhang (SYSU) Cosmic ray boost C ν B 2025 3/12

Cosmic rays and relic neutrinos

- CE ν NS: neutrinos scatter off the whole nucleus, with the cross section coherently enhanced by $\propto N^2$ (valid for $E_{\nu} \lesssim \mathcal{O}(10)$ MeV).
- ullet Pierre Auger Observatory (PAO) shows that for $E_{\rm CR}>10$ EeV, the proton fraction is <10%, i.e. heavy nuclei dominate. Pierre Auger [2211.02857]
- For iron with $E_{\mathcal{N}_i} \sim 10$ EeV scattering on a relic neutrino of $m_{\nu}=0.1$ eV, in the rest frame of the nucleus, $C\nu B$ energy is about ~ 20 MeV exactly the $CE\nu NS$ regime.

Scattering cross sections

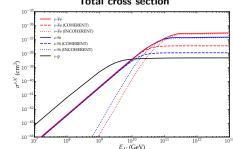
The total differential cross section of UHECR– $C\nu B$ scattering includes both coherent and incoherent contributions:

$$\frac{d\sigma^{\nu\mathcal{N}_i}}{dE_{\nu}} = \frac{d\sigma^{\nu\mathcal{N}_i}_{\text{coh}}}{dE_{\nu}} + \frac{d\sigma^{\nu\mathcal{N}_i}_{\text{incoh}}}{dE_{\nu}}.$$
 (1)

Coherence differential cross section:

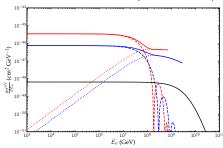
$$\frac{d\sigma_{\text{coh}}^{\nu N_i}}{dE_{\nu}} = \frac{2G_F^2 m_{\nu}}{\pi} Q_{W,i}^2 \left(1 - \frac{E_{\nu}}{E_{N_i}} - \frac{m_{N_i}^2 E_{\nu}}{2m_{\nu} E_{N_i}^2} \right) F^2(q^2), \tag{2}$$

Incoherence differential cross section:


$$\frac{d\sigma_{\text{incoh}}^{\nu N_i}}{dE_{\nu}} = \left[Z_i \frac{d\sigma_{\text{ES}}^{\nu p}}{dE_{\nu}} + N_i \frac{d\sigma_{\text{ES}}^{\nu n}}{dE_{\nu}} \right] \left(1 - F^2(q^2) \right). \tag{3}$$

- Coherent $\propto Q_W^2$ and $\propto F^2(q^2)$, corresponding to scattering on the whole nucleus.
- Incoherent \propto nucleon number and $\propto (1 F^2(q^2))$, corresponding to scattering on individual nucleons.

Jiajie Zhang (SYSU) Cosmic ray boost CvB 2025 5/12


Scattering cross sections

- For $E_N > 10 \text{ EeV}$, heavy nuclei dominate the cross section.
- For $E_N < 10 \text{ EeV}$, proton ES dominates.
- At higher energies, heavier nuclei have larger $\sigma_{\nu \mathcal{N}}$.

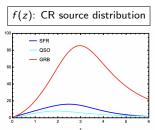
Differential cross section ($E_N = 100 \text{ EeV}$)

• For $E_{\nu} < 10^8 \; \mathrm{GeV}$, heavy nuclei have cross sections $\mathcal{O}(10^2)$ larger than protons.

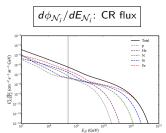
6/12

Kinematic cutoff

As momentum transfer $q = \sqrt{2m_{\nu}E_{\nu}}$ increases, the dominant contribution changes from coherent to incoherent: when q is small, $F^2(q^2) \simeq 1 \Rightarrow$ coherent dominates; when q is large, $1 - F^2(q^2) \simeq 1 \Rightarrow$ incoherent dominates.

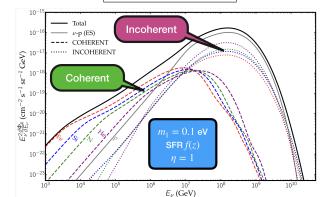

Flux of boosted $C\nu B$ at Earth

UHECR propagate long distances from their sources to the Earth, during which the $C\nu B$ can be boosted. The boosted $C\nu B$ flux at Earth is:


$$\frac{d\phi_{\nu}}{dE_{\nu}} = \sum_{i,j} \int_{z_{\min}}^{z_{\max}} dz \, \frac{c}{H(z)} \, f(z) \, \eta \, n_{\nu_j} (1+z)^3 \int_0^{\infty} dE_{\mathcal{N}_i} \, \frac{d\sigma^{\nu \mathcal{N}_i}}{dE'_{\nu}} \, \frac{d\phi_{\mathcal{N}_i}}{dE_{\mathcal{N}_i}} \, \Theta \left[E_{\nu}^{\max} - E'_{\nu} \right]$$

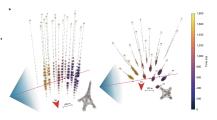
$$\tag{4}$$

Cosmic ray boost $C\nu B$

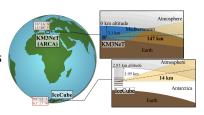

Star Formation Rate (SFR) Quasi-Stellar Object (QSO) Gamma-Ray Burst (GRB) (In my talk we use SFR)

We take $E_{\mathcal{N}_i} > 5 \times 10^8 \; \mathrm{GeV}$ as UHECR, since only such high-energy particles can escape from their host galaxies.

Flux of boosted $C\nu B$ at Earth

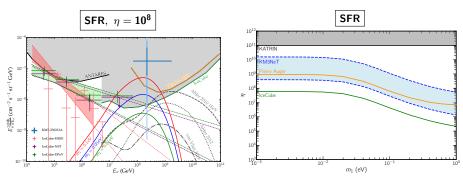


- Coherent scattering dominates for $E_{\nu} \lesssim 10^7 \ {\rm GeV}$, with heavier nuclei showing stronger enhancement.
- For $E_{\nu} \gtrsim 10^7~{\rm GeV}$, proton elastic scattering dominates, with significant incoherent contribution from heavy nuclei.


Jiajie Zhang (SYSU) Cosmic ray boost C ν B 2025 8/12

KM3NeT and the KM3-230213A event

- KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea.
- **Detection principle**: multi-PMT optical modules detect Cherenkov light from μ tracks.
- KM3-230213A: The highest neutrino energy detected so far is 220 PeV.
- Tension between KM3NeT and IceCube: Some new physics models alleviate their tension.



KM3NeT Collaboration [Nature 638, 376 (2025)]

Brdar & Chattopadhyay [arXiv:2502.21299]

Constraints on $C\nu B$ overdensity

- At $m_1=0.01~{\rm eV}$, IceCube (PAO) sets $\eta<5.4\times10^7~(8.5\times10^8)$ at 90% CL.
- For $m_1 < 0.01 \ {\rm eV}$, the bounds become flat as the flux is dominated by the heavier eigenstates m_2 and m_3 .
- Explaining KM3-230213A requires $\eta \in [3.7 \times 10^8, 1.5 \times 10^{10}]$ for $m_1 = 0.01 \ \mathrm{eV}.$
- Different peak energies and multimessenger observations can distinguish boosted $C\nu B$ from cosmogenic neutrinos.

Jiajie Zhang (SYSU) Cosmic ray boost $C\nu B$ 2025 10/12

Summary

- UHECR boosting the CvB may be a possible source of ultra-high-energy neutrinos.
- The $C\nu B$ can be boosted to the UHE domain via both coherent and incoherent scattering with UHECR.
- Coherent scattering and incoherent scattering dominate the low- and high-energy regimes, respectively.
- The explanation of the KM3-230213A event can be achieved with $\eta \sim 10^8$ for $m_1=0.1$ eV.
- For $m_1=0.01$ eV, the 90% CL upper limits are $\eta<5.4\times10^7$ (IceCube) and $\eta<8.5\times10^8$ (PAO).

Jiajie Zhang (SYSU)

Thank you!