

Axion Magnetic Resonance in Low-Energy Precision Experiments

It is well-known that axions and photons can coherently convert into each other in a background magnetic field, a phenomenon commonly observed in a mixed two-level quantum system such as neutrino oscillations and nuclear spin precessions. Similar to the nuclear magnetic resonance and spin flips in a qubit system, we point out that an periodic (in time or space) background magnetic field can significantly enhance the axion-photon conversion. We denote this resonance as the Axion-Magnetic Resonance (AMR).

In this talk, I will illustrate the theoretical and experimental implications of the AMR, in particular in the context of laser-based axion searches and solar axion experiments (helioscopes). I will show its relevance for interesting some ALPs models and its capability in distinguishing different QCD axion models (KSVZ and DSFZ), independent of the axion relic abundance or cosmological history.

Primary author: SUN, Chen (ICTP, Trieste)

Presenter: SUN, Chen (ICTP, Trieste)