

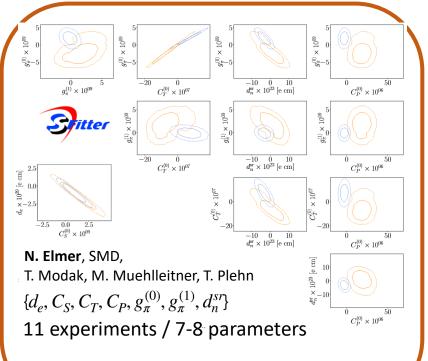
An uncertain view of the global EDM landscape

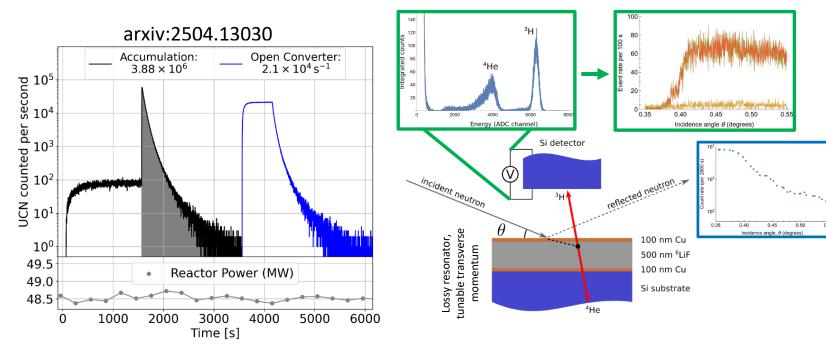
12 May 2025 Skyler Degenkolb, *Universität Heidelberg*

arxiv:2403.02052

Hadronic-level global analysis of EDMs

SuperSUN: ultracold neutrons for PanEDM

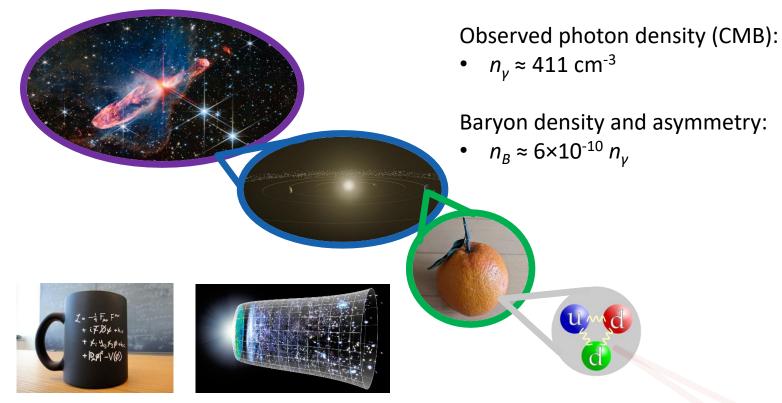

New methods: quantum sensing, QC

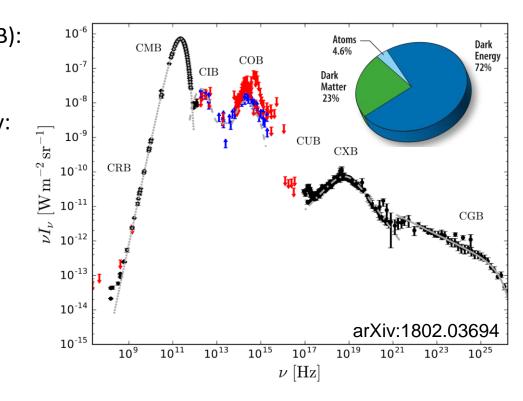


An uncertain view of the global EDM landscape

12 May 2025 Skyler Degenkolb, *Universität Heidelberg*

arxiv:2403.02052

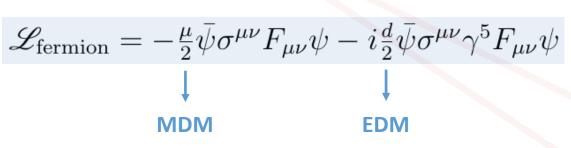




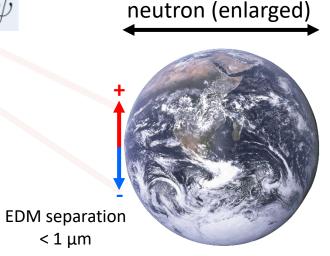
SuperSUN: ultracold neutrons for PanEDM

New methods: quantum sensing, QC

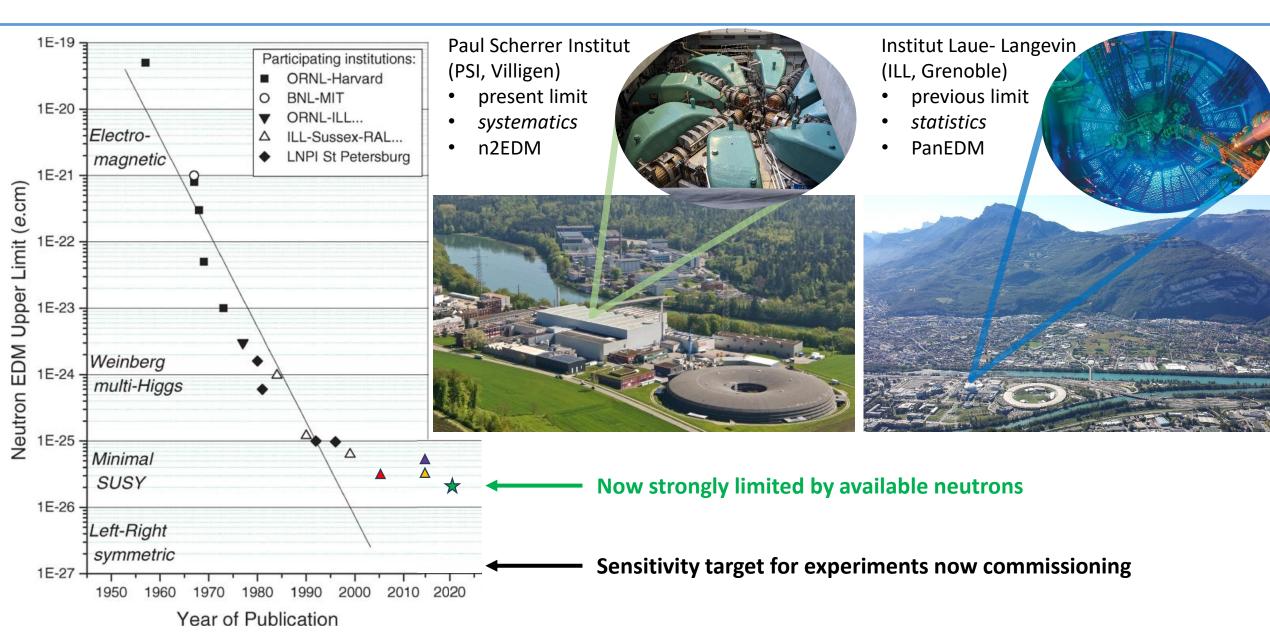
Hadronic-level global analysis of EDMs

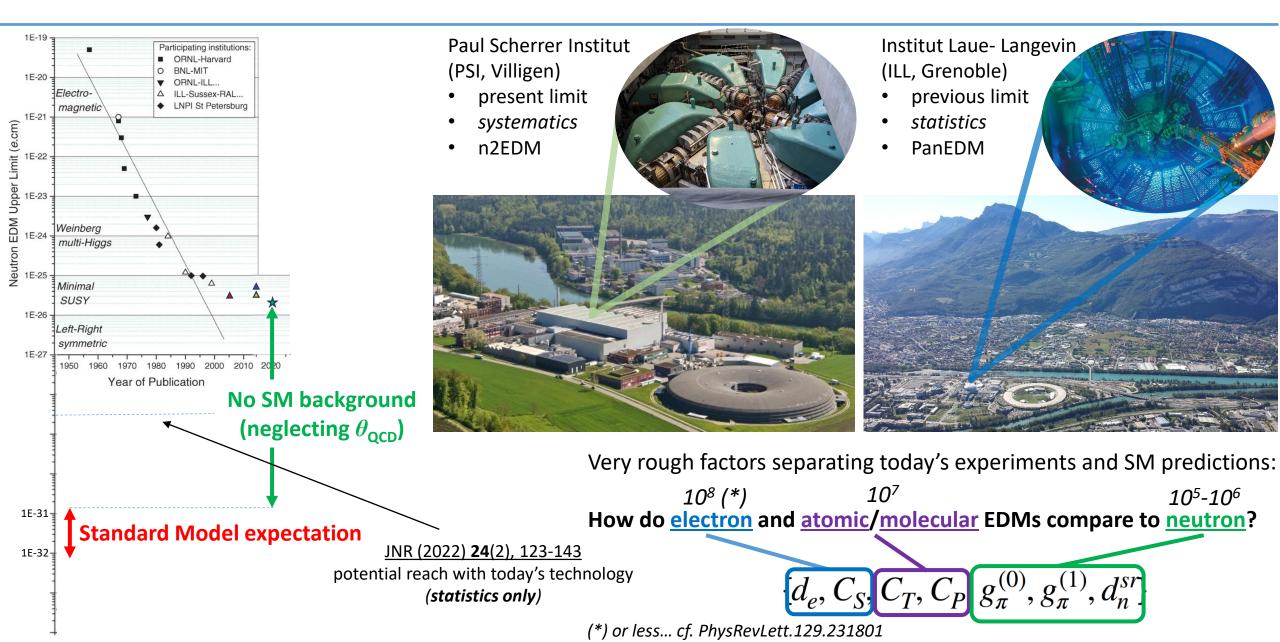


Sakharov criteria for Baryogenesis:


- 1. B non-conservation
- 2. C and CP violation
- 3. Far from thermal equilibrium

Strong CP problem:


- $|d_n| < 10^{-26} e \cdot \text{cm}$ (measured)
- implies $|\theta_{\rm QCD}| < 10^{-10}$ (too small)


$$H_{spin} = -\boldsymbol{\mu} \cdot \mathbf{B} - \mathbf{d} \cdot \mathbf{E}$$

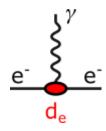
(European) Neutrons in the global context

(European) neutrons in the global context

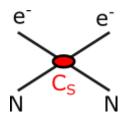
2020 European Strategy Update (2026: ongoing)

Other essential scientific activities for particle physics

A. The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics. This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments and searches for axions, dark sector candidates and feebly interacting particles. There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy. *Experiments in such diverse areas that offer potential high-impact particle physics programmes at laboratories in Europe should be supported, as well as participation in such experiments in other regions of the world.*


Broad categories / sensitivity

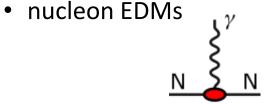
Open-shell atoms and molecules


- "paramagnetic"
- Cs, Tl, YbF, ThO, HfF⁺

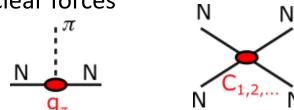
Main sensitivities:

electron EDM

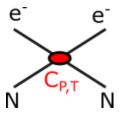
 semileptonic (nuclear spin independent)



others strongly suppressed

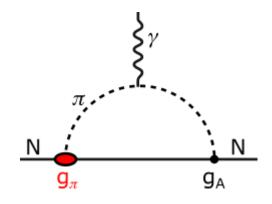

Closed-shell atoms and molecules

- "diamagnetic"
- Yb, Xe, Hg, Ra, TIF

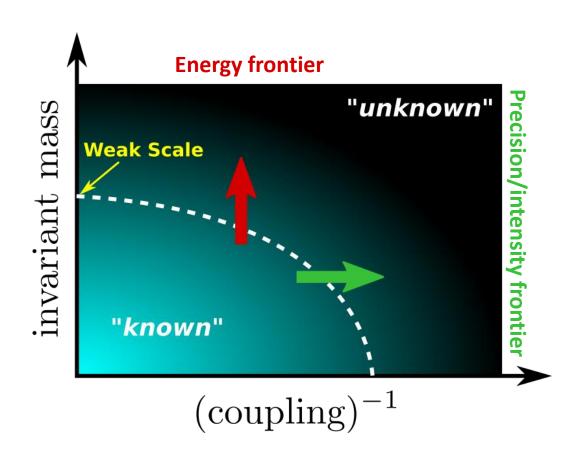

Main sensitivities:

nuclear forces

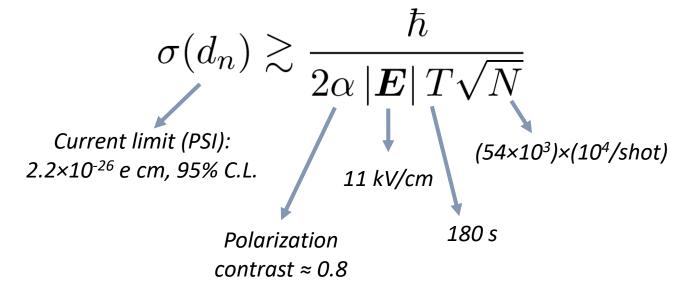
 semileptonic (nuclear spindependent)



Particles and other...


- various properties
- *n*, (*p*), μ, τ, Λ, ...

Main sensitivities:


- system dependent
- n constrains $\bar{\theta}$
- May need to look at higher scale for consistent interpretation

Precision Frontier: $d_n |E| \leq 10^{-22} \text{ eV}$

Statistical sensitivity:

Naïve estimate for generic new physics:

$$d_n \propto rac{m_q}{\Lambda^2} \cdot e \cdot \phi_{ ext{CPV}}$$
 Λ $pprox$ 30 TeV

What would a finite neutron EDM mean?

• CP violation from BSM and three SM sources (if we ignore neutrinos):

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{BSM}} + \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}}$$

• CKM CP-violation (Standard Model):

$$\mathcal{L}_{\text{CKM}} = -\frac{ig_2}{\sqrt{2}} \sum_{p,q} V_{pq} \bar{U}_L^p W^+ D_L^q + \text{H.c.}$$

Strong CP-violation (Standard Model):

$$\mathcal{L}_{ar{ heta}} = rac{g_3^2}{32\pi^2} ar{ heta} \operatorname{Tr}(G^{\mu
u} ilde{G}_{\mu
u})$$

details: arXiv:2403.02052 and earlier: Rev. Mod. Phys. 91, 015001 (2019) Phys. Rev. C 91, 035502 (2015)

Prog. Part. Nucl. Phys. **71**, 21 (2013)

Reality: many parameters, many experiments

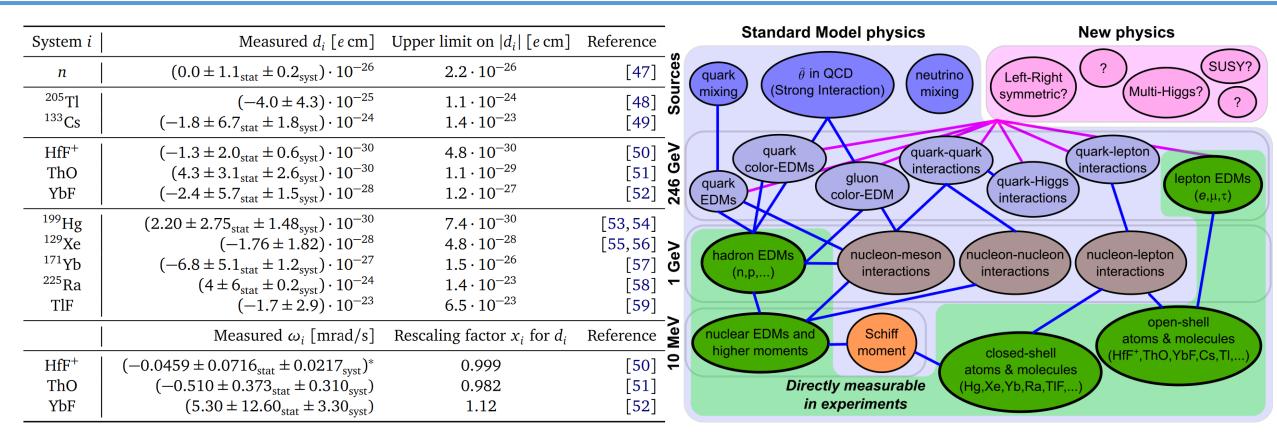
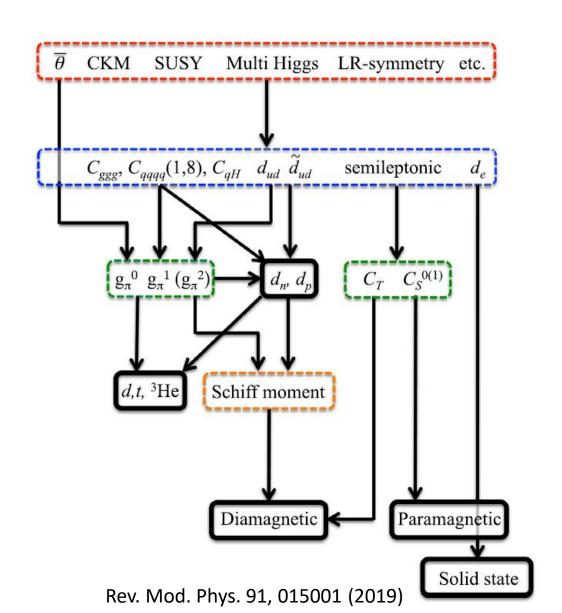


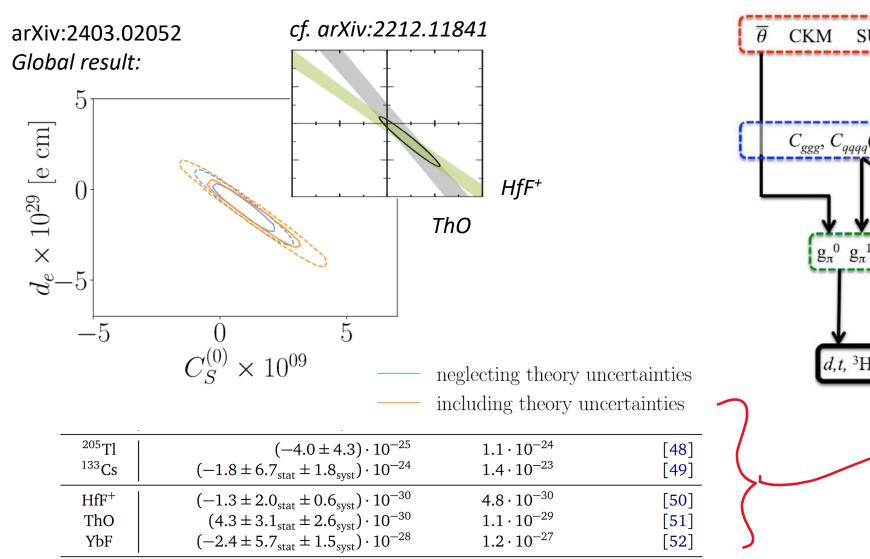
Table 1: Measured EDM values and 95% C.L. ranges used in our global analysis. For 129 Xe we combine two independent results with similar precision, using inverse-variance weighting. For the paramagnetic molecules, we also provide the measured angular frequencies and the rescaling factor which allows us to use $x_i d_i$ for each experimentally reported d_i . *The frequency for HfF⁺ is scaled by a factor of 2 relative to Ref. [50], to consistently use Eq.(27) for all systems.

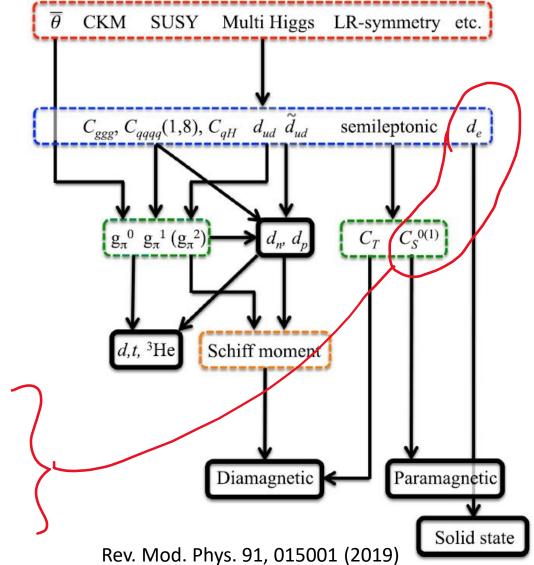
arXiv:2403.02052

EDMs as a "lightning rod" for new physics – without assumptions about the underlying model


Clear prediction that there is a signal to detect

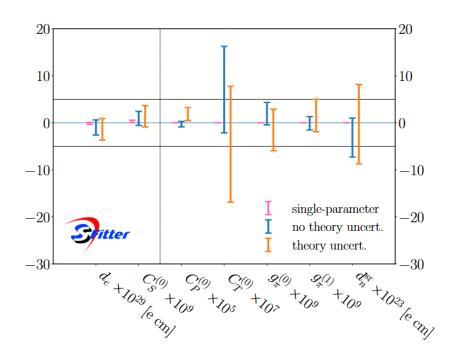
Global analysis: 11 experiments / 7 parameters


System i	Measured d_i [e cm]	Upper limit on $ d_i $ [e cm]	Reference
n	$(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-26}$	$2.2\cdot10^{-26}$	[47]
²⁰⁵ Tl	$(-4.0 \pm 4.3) \cdot 10^{-25}$	$1.1 \cdot 10^{-24}$	[48]
¹³³ Cs	$(-1.8 \pm 6.7_{\rm stat} \pm 1.8_{\rm syst}) \cdot 10^{-24}$	$1.4 \cdot 10^{-23}$	[49]
HfF ⁺	$(-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \cdot 10^{-30}$	$4.8 \cdot 10^{-30}$	[50]
ThO	$(4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \cdot 10^{-30}$	$1.1\cdot 10^{-29}$	[51]
YbF	$(-2.4 \pm 5.7_{\text{stat}} \pm 1.5_{\text{syst}}) \cdot 10^{-28}$	$1.2\cdot 10^{-27}$	[52]
¹⁹⁹ Hg	$(2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \cdot 10^{-30}$	$7.4 \cdot 10^{-30}$	[53,54]
¹²⁹ Xe	$(-1.76 \pm 1.82) \cdot 10^{-28}$	$4.8 \cdot 10^{-28}$	[55, 56]
¹⁷¹ Yb	$(-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \cdot 10^{-27}$	$1.5 \cdot 10^{-26}$	[57]
²²⁵ Ra	$(4 \pm 6_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-24}$	$1.4 \cdot 10^{-23}$	[58]
TlF	$(-1.7 \pm 2.9) \cdot 10^{-23}$	$6.5 \cdot 10^{-23}$	[59]
	Measured ω_i [mrad/s]	Rescaling factor x_i for d_i	Reference
HfF ⁺	$(-0.0459 \pm 0.0716_{\text{stat}} \pm 0.0217_{\text{syst}})^*$	0.999	[50]
ThO	$(-0.510 \pm 0.373_{\text{stat}} \pm 0.310_{\text{syst}})$	0.982	[51]
YbF	$(5.30 \pm 12.60_{\text{stat}} \pm 3.30_{\text{syst}})$	1.12	[52]


Table 1: Measured EDM values and 95% C.L. ranges used in our global analysis. For 129 Xe we combine two independent results with similar precision, using inverse-variance weighting. For the paramagnetic molecules, we also provide the measured angular frequencies and the rescaling factor which allows us to use $x_i d_i$ for each experimentally reported d_i . *The frequency for HfF⁺ is scaled by a factor of 2 relative to Ref. [50], to consistently use Eq.(27) for all systems.

arXiv:2403.02052

Open-shell systems constrain d_e and C_S



Global analysis: 11 experiments / 7 parameters

Measured d_i [e cm]	Upper limit on $ d_i $ [e cm]	Reference
$(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-26}$	$2.2\cdot10^{-26}$	[47]
$(-4.0 \pm 4.3) \cdot 10^{-25}$	$1.1 \cdot 10^{-24}$	[48]
$(-1.8 \pm 6.7_{\text{stat}} \pm 1.8_{\text{syst}}) \cdot 10^{-24}$	$1.4 \cdot 10^{-23}$	[49]
$(-1.3 \pm 2.0_{\rm stat} \pm 0.6_{\rm syst}) \cdot 10^{-30}$	$4.8 \cdot 10^{-30}$	[50]
$(4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \cdot 10^{-30}$	$1.1\cdot 10^{-29}$	[51]
$(-2.4 \pm 5.7_{\text{stat}} \pm 1.5_{\text{syst}}) \cdot 10^{-28}$	$1.2\cdot 10^{-27}$	[52]
$(2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \cdot 10^{-30}$	$7.4 \cdot 10^{-30}$	[53,54]
$(-1.76 \pm 1.82) \cdot 10^{-28}$	$4.8 \cdot 10^{-28}$	[55, 56]
$(-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \cdot 10^{-27}$	$1.5\cdot10^{-26}$	[57]
	$1.4 \cdot 10^{-23}$	[58]
$(-1.7 \pm 2.9) \cdot 10^{-23}$	$6.5 \cdot 10^{-23}$	[59]
Measured ω_i [mrad/s]	Rescaling factor x_i for d_i	Reference
$(-0.0459 \pm 0.0716_{\text{stat}} \pm 0.0217_{\text{syst}})^*$	0.999	[50]
,	0.982	[51]
$(5.30 \pm 12.60_{\text{stat}} \pm 3.30_{\text{syst}})$	1.12	[52]
	$(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-26}$ $(-4.0 \pm 4.3) \cdot 10^{-25}$ $(-1.8 \pm 6.7_{\text{stat}} \pm 1.8_{\text{syst}}) \cdot 10^{-24}$ $(-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \cdot 10^{-30}$ $(4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \cdot 10^{-30}$ $(-2.4 \pm 5.7_{\text{stat}} \pm 1.5_{\text{syst}}) \cdot 10^{-28}$ $(2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \cdot 10^{-30}$ $(-1.76 \pm 1.82) \cdot 10^{-28}$ $(-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \cdot 10^{-27}$ $(4 \pm 6_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-24}$ $(-1.7 \pm 2.9) \cdot 10^{-23}$ $\text{Measured } \omega_i \text{ [mrad/s]}$ $(-0.0459 \pm 0.0716_{\text{stat}} \pm 0.0217_{\text{syst}})^*$ $(-0.510 \pm 0.373_{\text{stat}} \pm 0.310_{\text{syst}})$	$(-4.0 \pm 4.3) \cdot 10^{-25} \qquad 1.1 \cdot 10^{-24} $ $(-1.8 \pm 6.7_{\text{stat}} \pm 1.8_{\text{syst}}) \cdot 10^{-24} \qquad 1.4 \cdot 10^{-23}$ $(-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \cdot 10^{-30} \qquad 4.8 \cdot 10^{-30} $ $(4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \cdot 10^{-30} \qquad 1.1 \cdot 10^{-29} $ $(-2.4 \pm 5.7_{\text{stat}} \pm 1.5_{\text{syst}}) \cdot 10^{-28} \qquad 1.2 \cdot 10^{-27}$ $(2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \cdot 10^{-30} \qquad 7.4 \cdot 10^{-30} $ $(-1.76 \pm 1.82) \cdot 10^{-28} \qquad 4.8 \cdot 10^{-28} $ $(-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \cdot 10^{-27} \qquad 1.5 \cdot 10^{-26} $ $(4 \pm 6_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-24} \qquad 1.4 \cdot 10^{-23} $ $(-1.7 \pm 2.9) \cdot 10^{-23} \qquad 6.5 \cdot 10^{-23} $ $\text{Measured } \omega_i \text{ [mrad/s]} \qquad \text{Rescaling factor } x_i \text{ for } d_i$ $(-0.0459 \pm 0.0716_{\text{stat}} \pm 0.0217_{\text{syst}})^* \qquad 0.999 $ $(-0.510 \pm 0.373_{\text{stat}} \pm 0.310_{\text{syst}}) \qquad 0.982$

Table 1: Measured EDM values and 95% C.L. ranges used in our global analysis. For 129 Xe we combine two independent results with similar precision, using inverse-variance weighting. For the paramagnetic molecules, we also provide the measured angular frequencies and the rescaling factor which allows us to use $x_i d_i$ for each experimentally reported d_i . *The frequency for HfF⁺ is scaled by a factor of 2 relative to Ref. [50], to consistently use Eq.(27) for all systems.

Hadronic scale global analysis: arXiv:2403.02052

"A Global View of the EDM Landscape"

SMD, Nina Elmer, Tanmoy Modak, Margarete Mühlleitner, Tilman Plehn

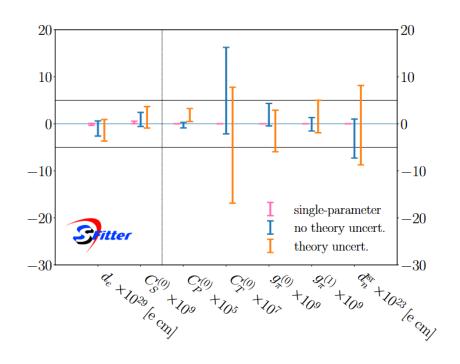
Global analysis: 11 experiments / 7 parameters

Theory uncertainties mostly lack a statistical interpretation

- Assume flat likelihood
- Coefficients compatibly with zero do not constrain

Correlations are automatically built into the analysis

- Comagnetometer measurements neglect a sub-dominant EDM by construction
- Deliberately-correlated EDM experiments could offer complementary constraining power


Flat directions appear already with 4 or 5 parameters

Depends on treatment of neutron/proton, and pion loops

Formally: 7 parameters are overconstrained by 11 experiments Reality: the experiments are insufficiently complementary!

- Well-constrained subspace (2 parameters: d_e, C_s)
- Poorly-constrained subspace (5 parameters / 5 measurements)
- Other parameters should really be included as well...

Hadronic scale global analysis: arXiv:2403.02052

"A Global View of the EDM Landscape"

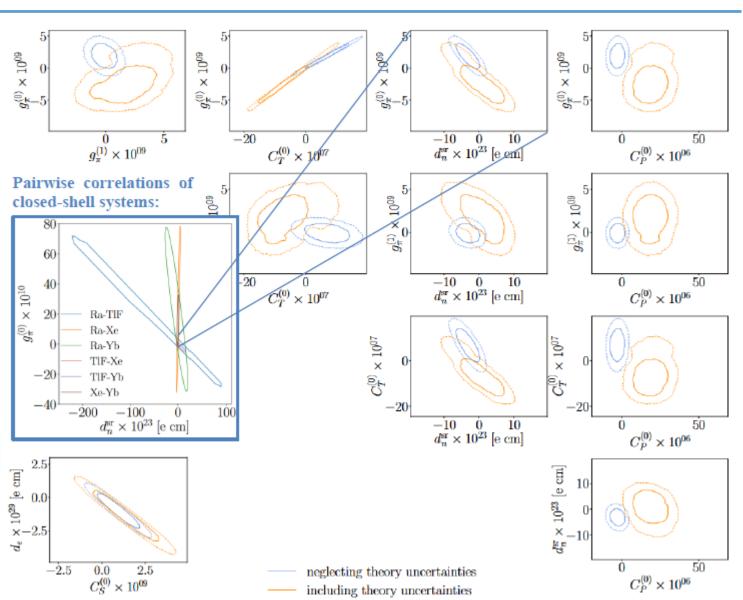
SMD, Nina Elmer, Tanmoy Modak, Margarete Mühlleitner, Tilman Plehn

Constructing, and deconstructing, an EDM

$$d_i = \sum_{c_j} \alpha_{i,c_j} c_j = \alpha_{i,d_e} d_e + \alpha_{i,C_S} C_S + \dots$$

$$c_j \in \left\{ d_e, C_S^{(0)}, C_T^{(0)}, C_P^{(0)}, g_\pi^{(0)}, g_\pi^{(1)}, d_n \right\}$$

Schiff Moment parameterization:


$$k_{i,S}S_{i} = \sum_{c_{j} \in \{d_{n,p}, g_{\pi}^{(0,1,2)}\}} \alpha_{i,c_{j}}c_{j}$$

$$\approx k_{i,S} \left[s_{i,n}d_{n} + s_{i,p}d_{p} + \frac{m_{N}g_{A}}{F_{\pi}} \left(a_{i,0}g_{\pi}^{(0)} + a_{i,1}g_{\pi}^{(1)} + a_{i,2}g_{\pi}^{(2)} \right) \right]$$

$$= k_{i,S} \left[s_{i,n}d_{n}^{sr} + s_{i,p}d_{p}^{sr} + \frac{m_{N}g_{A}}{F_{\pi}} \left(\tilde{a}_{i,0}g_{\pi}^{(0)} + \tilde{a}_{i,1}g_{\pi}^{(1)} + \tilde{a}_{i,2}g_{\pi}^{(2)} \right) \right]$$

Contours, correlations, <u>likelihoods</u>:

$$\chi^{2}(C_{j}) = \sum_{i} \left(\frac{d_{i}^{\text{measured}} - d_{i}^{\text{calculated}}(C_{j})}{\sigma_{i}^{\text{measured}}}\right)^{2}$$

• Semileptonic interactions at the weak scale:

$$\mathcal{L}_{EFT} \supset C_{\ell eqd} \left(\bar{L}^{j} e_{R} \right) \left(\bar{d}_{R} Q_{j} \right) + C_{\ell equ}^{(1)} \left(\bar{L}^{j} e_{R} \right) \epsilon_{jk} \left(\bar{Q}^{k} u_{R} \right) + C_{\ell equ}^{(3)} \left(\bar{L}^{j} \sigma_{\mu\nu} e_{R} \right) \epsilon_{jk} \left(\bar{Q}^{k} \sigma_{\mu\nu} u_{R} \right)$$

$$+ C_{quqd}^{(1)} \left(\bar{Q}^{j} u_{R} \right) \epsilon_{jk} \left(\bar{Q}^{k} d_{R} \right) + C_{quqd}^{(8)} \left(\bar{Q}^{j} T^{a} u_{R} \right) \epsilon_{jk} \left(\bar{Q}^{k} T^{a} d_{R} \right) + \text{h.c.}$$

• Low-energy constants at GeV energies, from weak-scale Wilson coefficients:

$$C_{S}^{(0)} = -g_{S}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} - C_{\ell e q u}^{(1)} \right) \qquad C_{S}^{(1)} = g_{S}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} + C_{\ell e q u}^{(1)} \right)$$

$$C_{T}^{(0)} = -g_{T}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e q u}^{(3)} \right) \qquad C_{T}^{(1)} = -g_{T}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e q u}^{(3)} \right)$$

$$C_{T}^{(0)} = g_{P}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} + C_{\ell e q u}^{(1)} \right) \qquad C_{P}^{(1)} = -g_{P}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} - C_{\ell e q u}^{(1)} \right)$$

• Semileptonic interactions at the **hadronic** scale (w/ nonrelativistic nucleons):

$$\mathcal{L}_{eN} = -\frac{G_F}{\sqrt{2}} \left(\bar{e}i\gamma_5 e \right) \bar{N} \left(C_S^{(0)} + C_S^{(1)} \tau_3 \right) N + \frac{8G_F}{\sqrt{2}} \nu_{\nu} \left(\bar{e}\sigma^{\mu\nu} e \right) \bar{N} \left(C_T^{(0)} + C_T^{(1)} \tau_3 \right) S_{\mu} N - \frac{G_F}{\sqrt{2}} \left(\bar{e}e \right) \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right]$$

• Low-energy constants also depend on hadronic matrix elements:

$$g_{S}^{(0)} \bar{\psi}_{N} \psi_{N} = \frac{1}{2} \langle N | \bar{u}u + \bar{d}d | N \rangle$$

$$g_{T}^{(0)} \bar{\psi}_{N} \sigma_{\mu\nu} \psi_{N} = \frac{1}{2} \langle N | \bar{u}\sigma_{\mu\nu} u + \bar{d}\sigma_{\mu\nu} d | N \rangle$$

$$g_{S}^{(1)} \bar{\psi}_{N} \tau_{3} \psi_{N} = \frac{1}{2} \langle N | \bar{u}u - \bar{d}d | N \rangle$$

$$g_{T}^{(1)} \bar{\psi}_{N} \sigma_{\mu\nu} \tau_{3} \psi_{N} = \frac{1}{2} \langle N | \bar{u}\sigma_{\mu\nu} u - \bar{d}\sigma_{\mu\nu} d | N \rangle$$

$$g_{P}^{(0)} \bar{\psi}_{N} \gamma_{5} \psi_{N} = \frac{1}{2} \langle N | \bar{u}\gamma_{5} u + \bar{d}\gamma_{5} d | N \rangle$$

$$g_{P}^{(1)} \bar{\psi}_{N} \gamma_{5} \tau_{3} \psi_{N} = \frac{1}{2} \langle N | \bar{u}\gamma_{5} u - \bar{d}\gamma_{5} d | N \rangle$$

• Semileptonic interactions at the **hadronic** scale:

$$\mathcal{L}_{eN} = -\frac{G_F}{\sqrt{2}} \left(\bar{e}i\gamma_5 e \right) \, \bar{N} \left(C_S^{(0)} + C_S^{(1)} \tau_3 \right) N \, + \frac{8G_F}{\sqrt{2}} \, \nu_{\nu} \left(\bar{e}\sigma^{\mu\nu} e \right) \, \bar{N} \left(C_T^{(0)} + C_T^{(1)} \tau_3 \right) S_{\mu} N \\ - \frac{G_F}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right) \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right) \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right) \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right) \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right) \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{1}{\sqrt{2}} \left(\bar{e}e \right) \, \frac{\partial^{\mu}}{m_N} \left[\bar{N} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(1)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^{(0)} \tau_3 \right) S_{\mu} N \right] \\ = \int_{\mathbb{R}^{(0)}} \frac{\partial^{\mu}}{\partial n_N} \left[\bar{n} \left(C_P^{(0)} + C_P^$$

 η replaces π ; factor $m_{ud}/m_s \approx 1/20$

$$C_P^{(0)} = g_P^{(0)} \frac{v^2}{\Lambda^2} \operatorname{Im} \left(C_{\ell e d q} + C_{\ell e q u}^{(1)} \right)$$

$$C_P^{(1)} = -g_P^{(1)} \frac{v^2}{\Lambda^2} \operatorname{Im} \left(C_{\ell edq} - C_{\ell equ}^{(1)} \right)$$

$$C_{P}^{(0)} = g_{P}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} + C_{\ell e q u}^{(1)} \right)$$

$$C_{P}^{(1)} = -g_{P}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell e d q} - C_{\ell e q u}^{(1)} \right)$$

$$N \longrightarrow N$$

$$\begin{split} \langle N|\bar{q}i\gamma_5q|N\rangle &\propto g_{\pi NN}\frac{1}{m_\pi^2}\langle 0|\bar{q}i\gamma_5q|\pi\rangle \\ &\sim g_{\pi NN}\frac{1}{f_\pi m_\pi^2}\langle 0|\bar{q}q|0\rangle \\ &\sim O(100) \end{split}$$

• "Long-range" nuclear forces, involving pion-nucleon couplings:

$$\mathcal{L}_{\pi N} = \bar{N} \Big[g_{\pi}^{(0)} \vec{\tau} \cdot \vec{\pi} + g_{\pi}^{(1)} \pi^{0} + g_{\pi}^{(2)} \big(3\tau_{3}\pi^{0} - \vec{\tau} \cdot \vec{\pi} \big) \Big] N$$

$$+ C_{1} \left(\bar{N}N \right) \partial_{\mu} \left(\bar{N}S^{\mu}\bar{N} \right) + C_{2} \left(\bar{N}\vec{\tau}N \right) \cdot \partial_{\mu} \left(\bar{N}S^{\mu}\bar{N}\vec{\tau} \right) + \cdots$$

• "Short-range" leftovers (can be absorbed differently):

$$\mathcal{L}_{N,\mathrm{sr}} = -2\bar{N} \left[d_p^{\mathrm{sr}} \frac{1+\tau_3}{2} + d_n^{\mathrm{sr}} \frac{1-\tau_3}{2} \right] S_{\mu} N \nu_{\nu} F^{\mu\nu} - \frac{i}{2} F^{\mu\nu} \sum_{\ell} d_{\ell} \left(\bar{\ell} \sigma_{\mu\nu} \gamma_5 \ell \right)$$

• Nuclear Schiff moment (and MQM for I>1/2):

$$k_{i,S}S_i = k_{i,S} \left[s_{i,n}d_n + s_{i,p}d_p + \frac{m_N g_A}{F_{\pi}} \left(a_{i,0}g_{\pi}^{(0)} + a_{i,1}g_{\pi}^{(1)} + a_{i,2}g_{\pi}^{(2)} \right) \right]$$

• "Long-range" nuclear forces, involving pion-nucleon couplings:

$$\mathcal{L}_{\pi N} = \bar{N} \Big[g_{\pi}^{(0)} \vec{\tau} \cdot \vec{\pi} + g_{\pi}^{(1)} \pi^0 + g_{\pi}^{(2)} \big(3\tau_3 \pi^0 - \vec{\tau} \cdot \vec{\pi} \big) \Big] N$$

$$+ C_1 \left(\bar{N} N \right) \partial_{\mu} \left(\bar{N} S^{\mu} \bar{N} \right) + C_2 \left(\bar{N} \vec{\tau} N \right) \cdot \partial_{\mu} \left(\bar{N} S^{\mu} \bar{N} \vec{\tau} \right) + \cdots$$

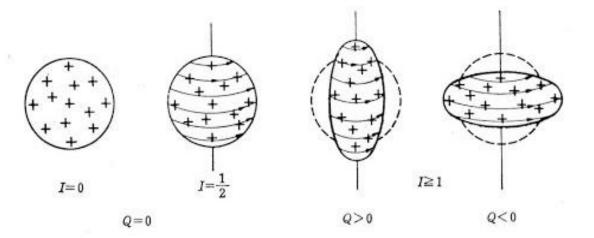
• "Short-range" leftovers (can be absorbed differently):

$$\mathcal{L}_{N,\text{sr}} = -2\bar{N} \left[d_p^{\text{sr}} \frac{1+\tau_3}{2} + d_n^{\text{sr}} \frac{1-\tau_3}{2} \right] S_{\mu} N \nu_{\nu} F^{\mu\nu} - \frac{i}{2} F^{\mu\nu} \sum_{\ell} d_{\ell} \left(\bar{\ell} \sigma_{\mu\nu} \gamma_5 \ell \right)$$

• Nuclear Schiff moment (and MQM for I>1/2):

Assume:
$$d_n^{\rm sr} \approx -d_n^{\rm sr}$$

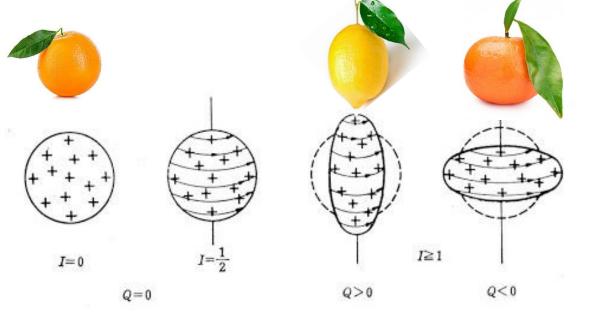
$$k_{i,S}S_i = k_{i,S} \left[s_{i,n}d_n + s_{i,p}d_p + \frac{m_N g_A}{F_\pi} \left(a_{i,0}g_\pi^{(0)} + a_{i,1}g_\pi^{(1)} + a_{i,2}g_\pi^{(2)} \right) \right]$$


$$S = s_N d_N + \frac{m_N g_A}{F_{\pi}} \left[a_0 \bar{g}_{\pi}^{(0)} + a_1 \bar{g}_{\pi}^{(1)} + a_2 \bar{g}_{\pi}^{(2)} \right]$$

We do *not* expect large Schiff moments in ¹²⁹Xe/ ¹⁹⁹Hg (suppressed by the screening effect)

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

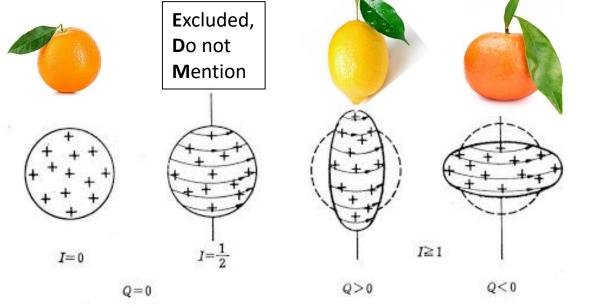
But deformed nuclei can actually have **enhanced** EDMs:


$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

$$S = s_N d_N + \frac{m_N g_A}{F_{\pi}} \left[a_0 \bar{g}_{\pi}^{(0)} + a_1 \bar{g}_{\pi}^{(1)} + g_2 \bar{g}_{\pi}^{(2)} \right]$$

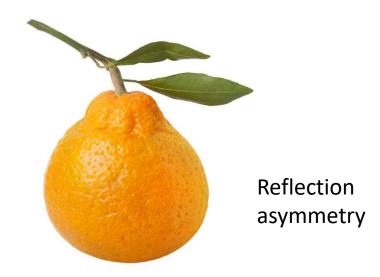
We do *not* expect large Schiff moments in ¹²⁹Xe/ ¹⁹⁹Hg (suppressed by the screening effect)

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - \left[k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}\right]$$


But deformed nuclei can actually have enhanced EDMs:

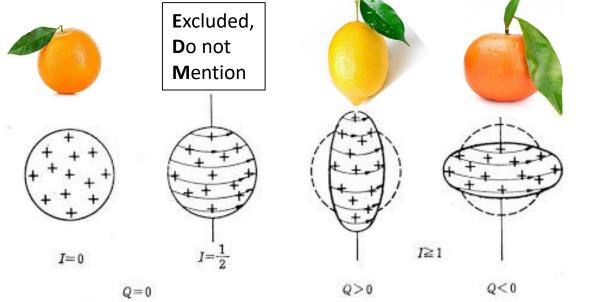
$$\longrightarrow d_A(\text{dia}) = \kappa_S S - \left[k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}\right]$$

$$S = s_N d_N + \frac{m_N g_A}{F_{\pi}} \left[a_0 \bar{g}_{\pi}^{(0)} + a_1 \bar{g}_{\pi}^{(1)} + g_2 \bar{g}_{\pi}^{(2)} \right]$$

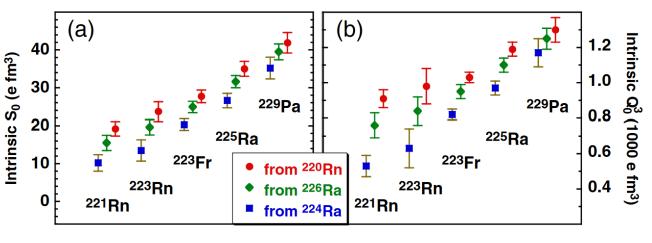

We do *not* expect large Schiff moments in ¹²⁹Xe/ ¹⁹⁹Hg (suppressed by the screening effect)

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

But deformed nuclei can actually have enhanced EDMs:


$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

$$S = s_N d_N + \frac{m_N g_A}{F_{\pi}} \left[a_0 \bar{g}_{\pi}^{(0)} + a_1 \bar{g}_{\pi}^{(1)} + a_2 \bar{g}_{\pi}^{(2)} \right]$$


We do *not* expect large Schiff moments in ¹²⁹Xe/ ¹⁹⁹Hg (suppressed by the screening effect)

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

But deformed nuclei can actually have enhanced EDMs:

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

Phy. Rev. Lett. **121**, 232501 (2018)

VOLUME 60, NUMBER 21

PHYSICAL REVIEW LETTERS

23 MAY 1988

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

M. Kitano, (a) F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf Department of Physics, Princeton University, Princeton, New Jersey 08544

G. Ulm (b) and K. Wendt (c)
ISOLDE, CERN, Geneva Switzerland

T. Chupp

Harvard University, Cambridge, Massachusetts 02138

J. Bonn, R. Neugart, and E. Otten Universität Mainz, Mainz, Germany

and

H. T. Duong

Laboratoire Aimè Cotton, Orsay, France (Received 22 June 1987)

This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of 209 Rn and 223 Rn has been measured by observation of γ -ray anisotropies and the magnetic dipole moment for 209 Rn has been measured by the nuclear-magnetic-resonance method to be $|\mu| = 0.838\,81(39)\mu_N$.

PHYSICAL REVIEW C 77, 052501(R) (2008)

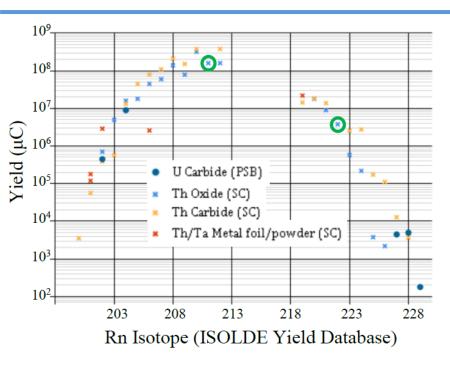
Polarization and relaxation rates of radon

E. R. Tardiff, J. A. Behr, T. E. Chupp, K. Gulyuz, R. S. Lefferts, W. Lorenzon, S. R. Nuss-Warren, M. R. Pearson, N. Pietralla, G. Rainovski, J. F. Sell, and G. D. Sprouse

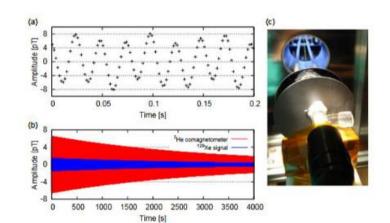
¹FOCUS Center, University of Michigan Physics Department, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA

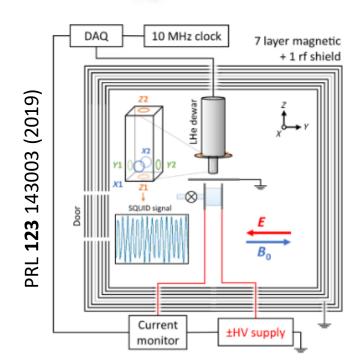
²University of Michigan Physics Department, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA

³TRIUMF, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada


⁴SUNY Stony Brook Department of Physics and Astronomy, Stony Brook, New York 11794-3800, USA

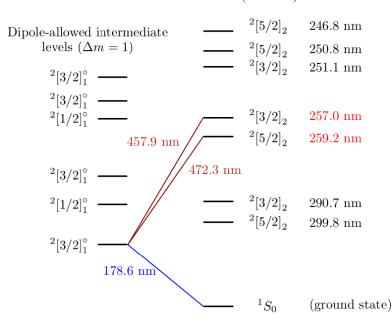
(Received 10 January 2008; published 23 May 2008)


Polarization and relaxation of radon isotopes by spin exchange with laser optically pumped rubidium were studied in preparation for electric dipole moment measurements with octupole deformed 223 Rn. γ -ray anisotropies provided a measure of nuclear polarization produced by spin exchange with laser polarized rubidium vapor, and the temperature dependence over the range 130 to 220° C was measured to parametrize the spin exchange polarization and the quadrupole-dominated wall relaxation rate. These results provide quantitative data for developing electric dipole moment measurements of octupole-deformed 223 Rn and other radon isotopes.


DOI: 10.1103/PhysRevC.77.052501 PACS number(s): 32.10.Dk, 11.30.-j, 23.20.En, 23.20.Gq

Complementary closed-shell atoms: ²¹¹Rn/¹²⁹Xe

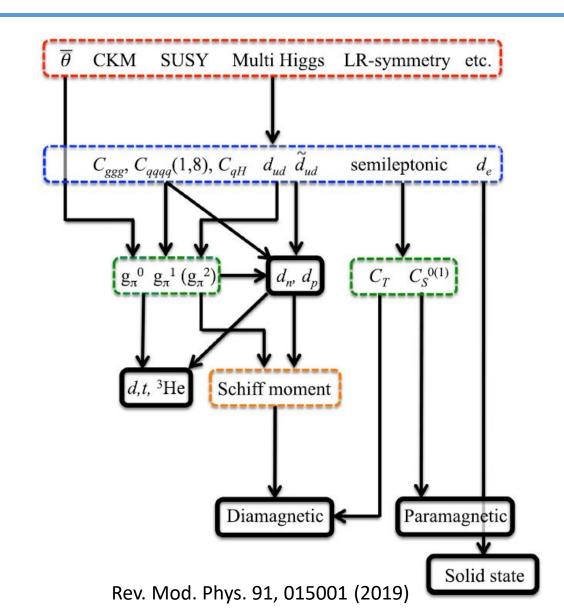
Figure 5: Radon production yields from the CERN-ISOLDE facility, with the relevant isotopes 211 Rn and 222 Rn circled. Extraction of 220 Rn was already demonstrated at REXTRAP, with 1.25×10^7 ions/s arriving at the experiment [Gaf13]. The yield now may be even higher with protons, and in any case the finally desired isotope 211 Rn lies near the peak of the yield curve.



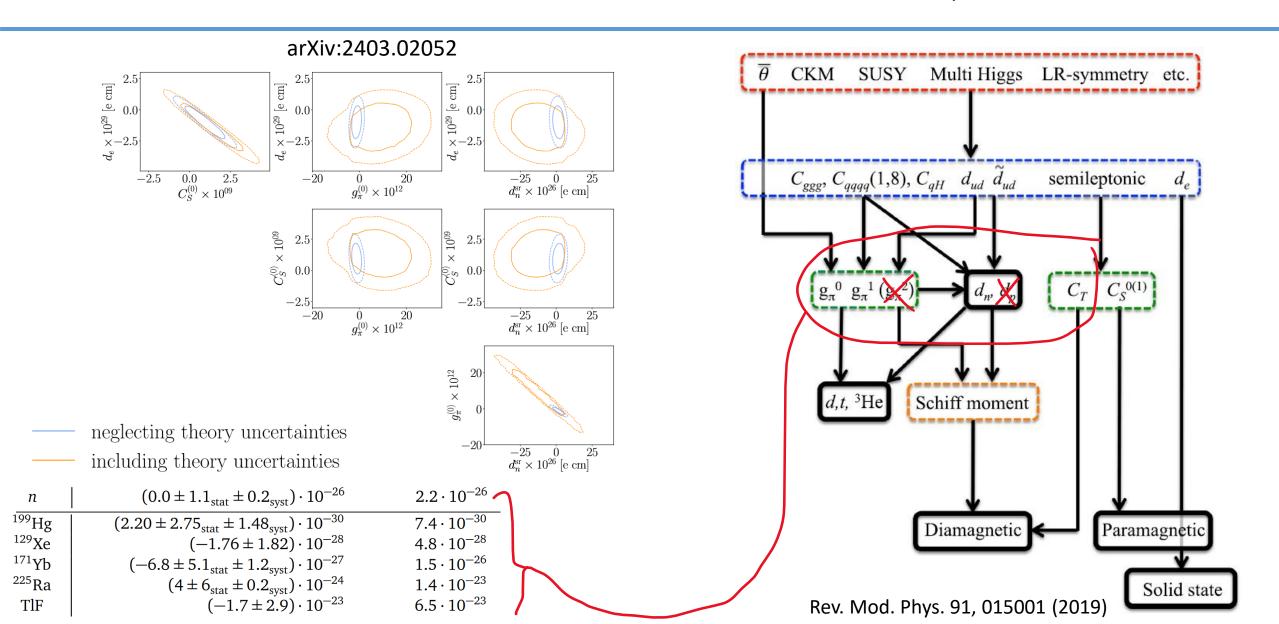
²¹¹Rn/¹²⁹Xe comagnetometry ...with laser readout

$$\chi^{2}(C_{j}) = \sum_{i} \left(\frac{d_{i}^{\text{measured}} - d_{i}^{\text{calculated}}(C_{j})}{\sigma_{i}^{\text{measured}}}\right)^{2}$$

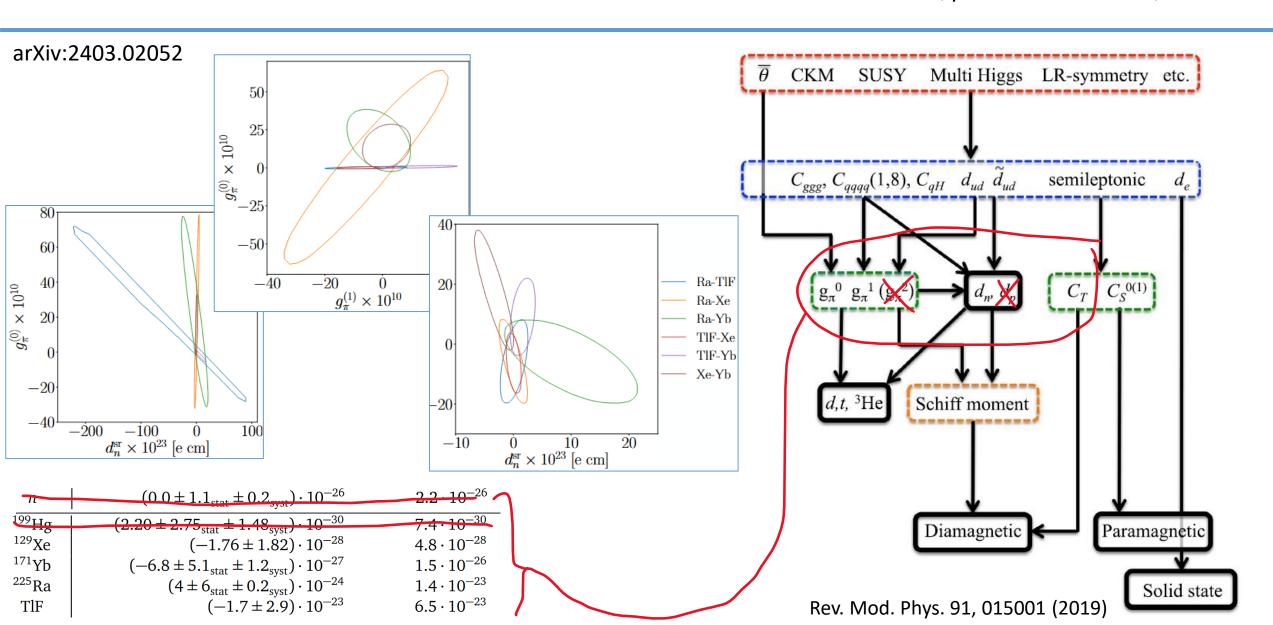
Two-photon allowed excited states ($\Delta m = 2$)

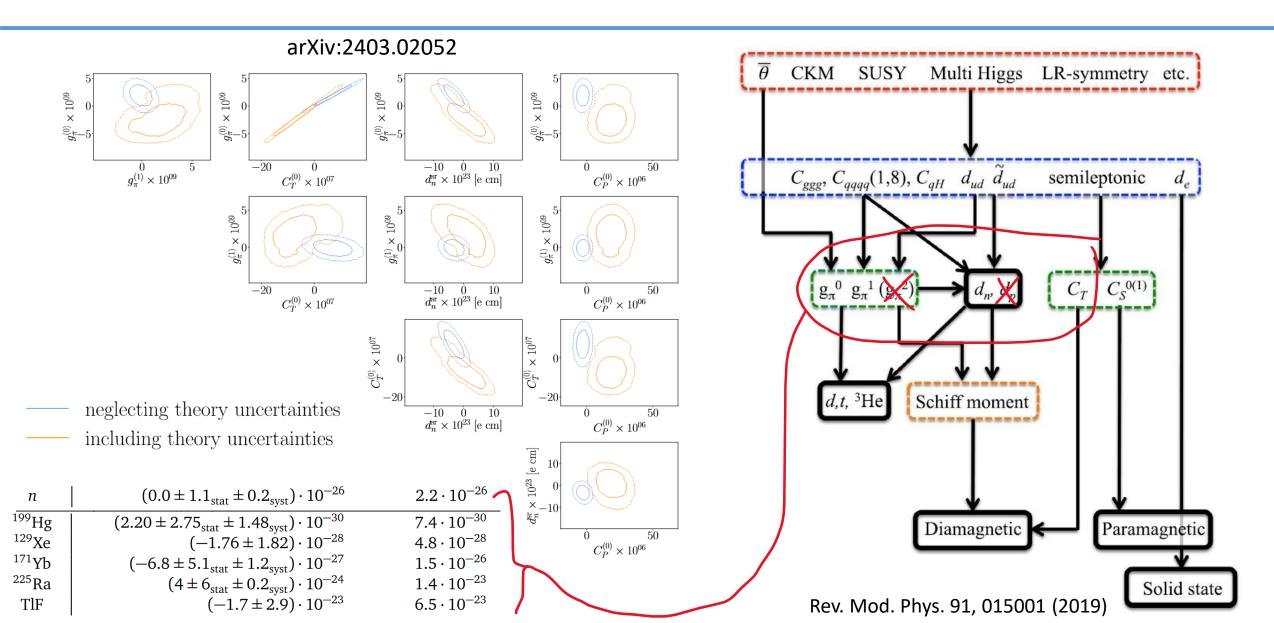


Return to the overview


Constraints on ... come mainly from ...

d_e	open shell molecules	
C_S	open shell molecules	
C_T	closed-shell atoms (Hg, Xe)	
C_{P}	closed-shell atoms (Hg, Xe)	
$g_{\pi}^{(0)}$	neutron, Hg	
$g_{\pi}^{(1)}$	neutron, Hg, other closed-shell	
d_n^{sr}	neutron, Hg	


...i.e., from 5 dominating measurements


Closed-shell systems constrain g_{π} , $d_{n,p}$, and $C_{T,P}$

Closed-shell systems constrain g_{π} , $d_{n,p}$, and $C_{T,P}$

Closed-shell systems constrain g_{π} , $d_{n,p}$, and $C_{T,P}$

Caveats

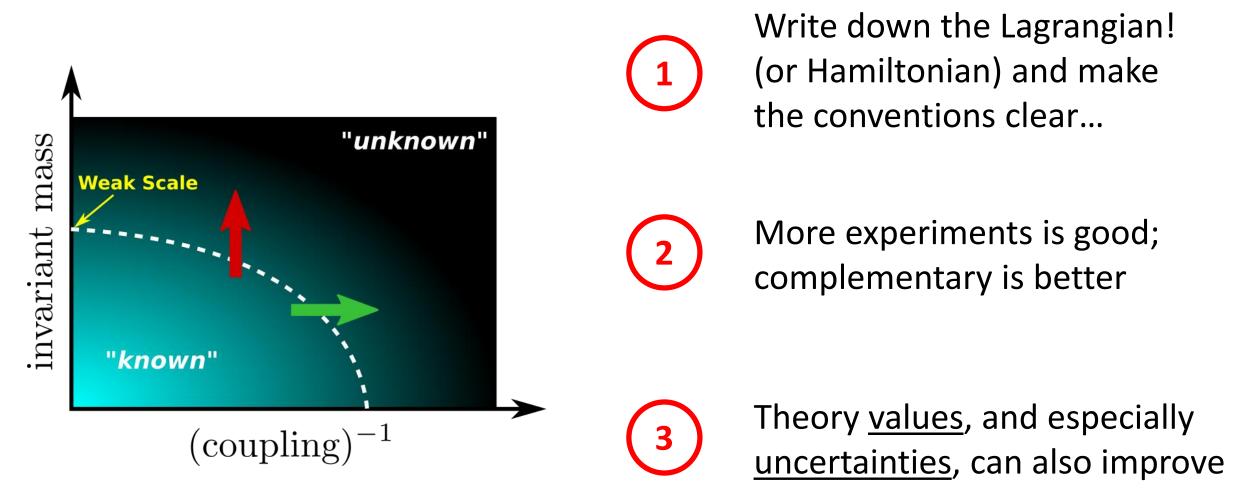
System i	$\langle \sigma_n \rangle$	$\langle \sigma_p \rangle$	$\langle \sigma_z angle^{(0)}$
Tl	0.274	0.726	1
Cs	-0.206	-0.572	-0.778
¹⁹⁹ Hg	-0.302	-0.032	-0.334
¹²⁹ Xe	0.73	0.27	1
¹⁷¹ Yb	-0.3	-0.034	-0.334
²²⁵ Ra	0.72	0.28	1
TlF	0.274	0.726	1

Shell-model estimates for deformed nuclei...
Residual inconsistencies...

System i	$k_{i,S}$ [cm/fm ³]	$s_{i,n}[fm^2]$	$s_{i,p}[fm^2]$
Tl Cs	$ \begin{array}{c c} -4.2^{+2.1}_{-1.8} \cdot 10^{-18} [35] \\ -9.99^{+2.9}_{-4.1} \cdot 10^{-18} [35] \end{array} $	$0.14^{\pm0.03}$	$-0.38^{+1.38}_{-0.45} \\ 0.1^{\pm0.1}$
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$ \begin{array}{c c} -2.26^{\pm0.23} \cdot 10^{-17} [115] \\ 3.62^{\pm0.25} \cdot 10^{-18} [115] \\ -2.10^{+0.22}_{-0.0} \cdot 10^{-17} [66, 116] \\ -8.5^{+0.25}_{-0.3} \cdot 10^{-17} [18, 66, 116] \\ -4.59^{\pm0.41} \cdot 10^{-13} [115] \end{array}$	$\begin{array}{c} 0.6^{+1.33}_{-0.12} \\ 0.63^{+0.16}_{-0.12} \\ 0.54^{+0.13}_{-0.11} \\ 0.63^{+0.16}_{-0.12} \\ 0.14^{\pm0.03} \end{array}$	$\begin{array}{c} 0.06^{+0.20}_{-0.01} \\ 0.14^{\pm0.03} \\ 0.054^{+0.016}_{-0.014} \\ 0.14^{+0.04}_{-0.03} \\ -0.38^{+1.38}_{-0.45} \end{array}$

Still missing/challenging:

- Some nuclear structure
 - Valence nucleon EDMs
 - Sign of some pion couplings
 - Short-range forces
- Hadronic matrix elements
- Sub-leading coefficients for open-shell molecules


So what can we do/attempt now?

- Work upwards in energy
- Add new experiments
- Include more parameters, and effects
 - MQM (beyond Cs...)
 - Muon and tau lepton (also indirect limits)
 - Short-range nuclear forces (hard...)
- Evaluate impact of improvements
 - Theory coefficients
 - Experimental bounds
 - Correlated experiments... new ideas?
- Constrain specific BSM scenarios

Still missing/challenging:

- Some nuclear structure
 - Valence nucleon EDMs
 - Sign of some pion couplings
 - Short-range forces
- Hadronic matrix elements
- Sub-leading coefficients for open-shell molecules

Thematic Recap

Questions?

Seeking students and Post-Docs!

what-if.xkcd.com

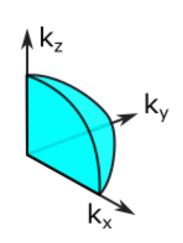
Special thanks to:

N. Elmer, T. Plehn, T. Modak (HD) M. Mühlleitner (KIT)

Many, many colleagues who helped answer questions and pinpoint errors (see acknowledgements in 2403.02052)

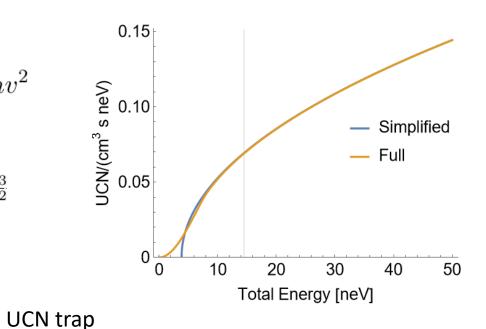
EDMs 2026 at Les Houches!

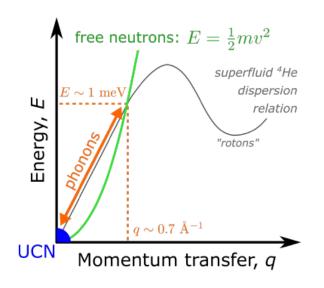
March 1-6, 2026

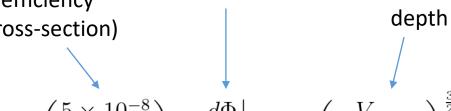

WE-Heraeus funding to cover participant room & board

Scientific program:

- Experiments targeting EDMs of the neutron, charged particles in storage rings, atoms, molecules...
- Theory for interpreting EDM, including hadronic, nuclear, atomic/molecular calculations...
- Phenomenological models and global analysis for CP-violating physics
- Connections between EDMs and other observables


Organizers: SMD, Stéphanie Roccia, Guillaume Pignol

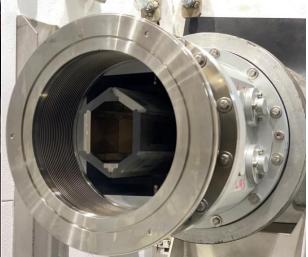

Producing UCN with helium



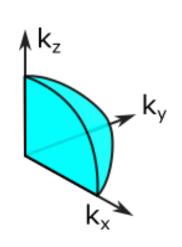
$$E = \frac{\hbar^2 \left| \mathbf{k} \right|^2}{2m} = \frac{1}{2} m v^2$$

$$V_k \sim rac{4}{3}\pi \left|m{k}
ight|^3 \propto E^{rac{3}{2}}$$

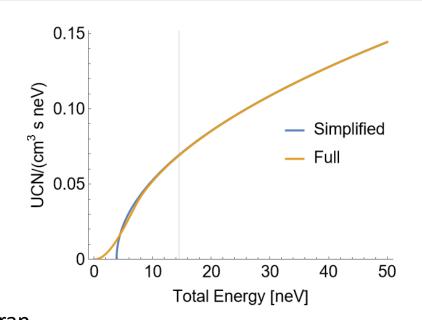
$$R \sim \left(\frac{5 \times 10^{-8}}{\mathrm{cm}^3 \mathrm{\ s}} \right) \times \left. \frac{d\Phi}{d\lambda} \right|_{8.9 \mathrm{\AA}} \times \left(\frac{V_{\mathrm{trap}}}{233 \mathrm{\ neV}} \right)^{\frac{3}{2}}$$
 production rate density

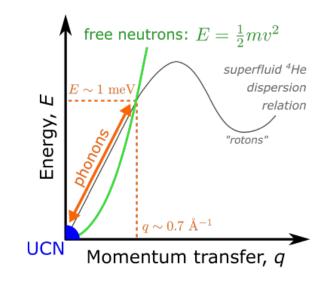

cold neutron

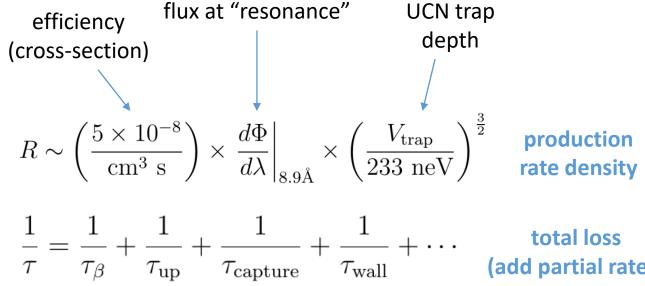
flux at "resonance"


$$\frac{1}{\tau} = \frac{1}{\tau_{\beta}} + \frac{1}{\tau_{\mathrm{up}}} + \frac{1}{\tau_{\mathrm{capture}}} + \frac{1}{\tau_{\mathrm{wall}}} + \cdots$$

total loss (add partial rates)

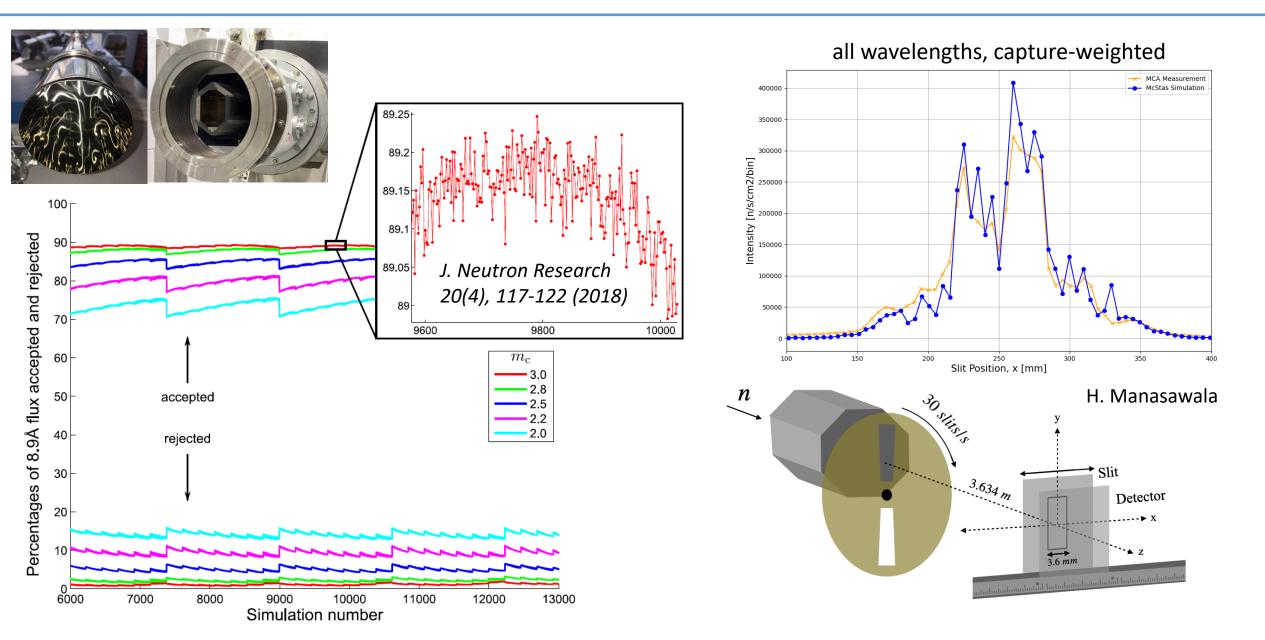



Producing UCN with helium

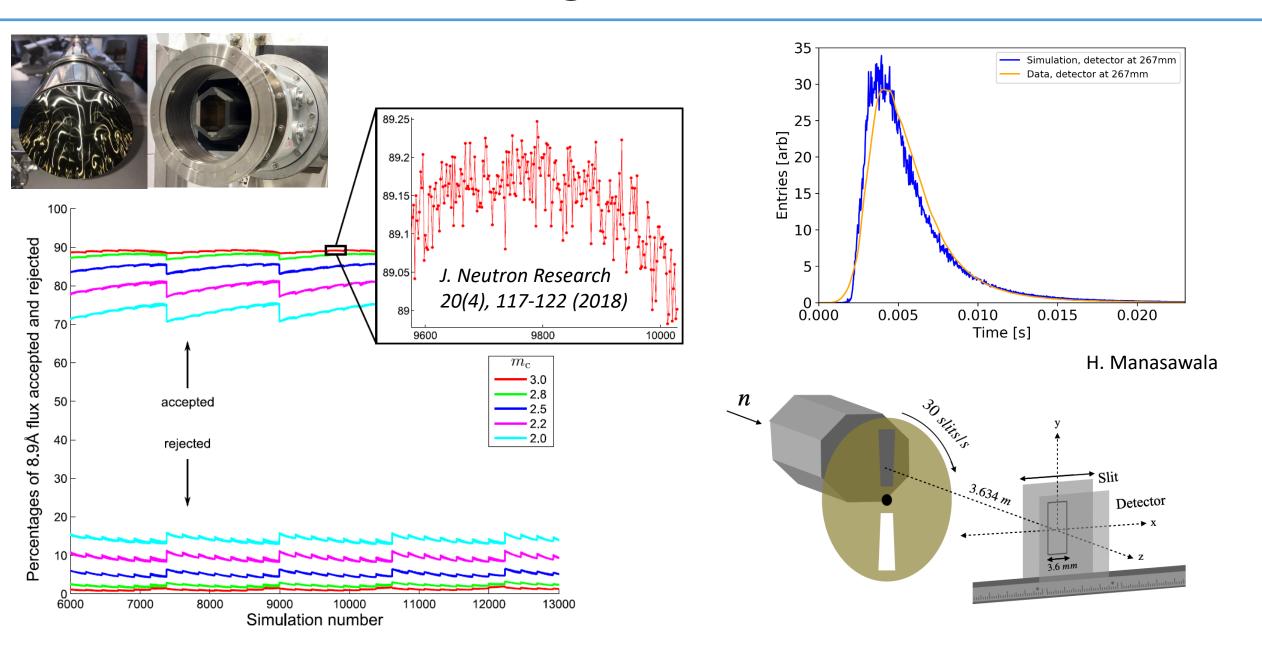


$$E = \frac{\hbar^2 \left| \boldsymbol{k} \right|^2}{2m} = \frac{1}{2} m v^2$$

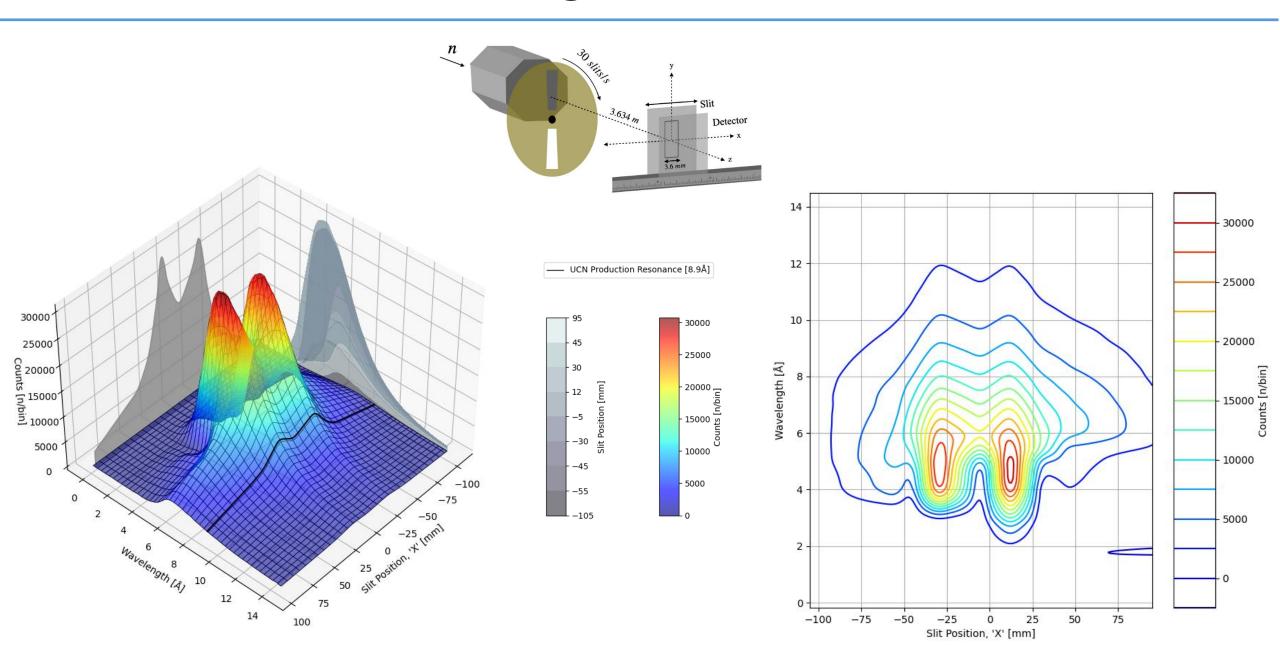
$$V_k \sim rac{4}{3}\pi \, |m{k}|^3 \propto E^{rac{3}{2}}$$

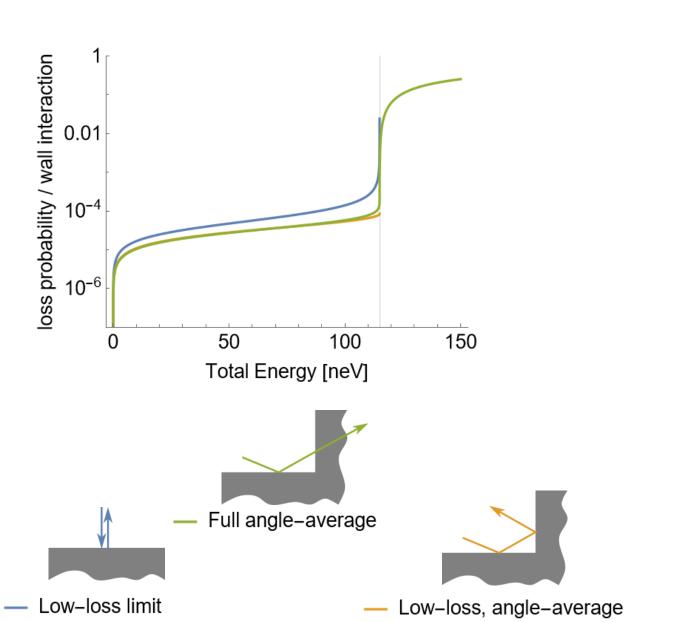


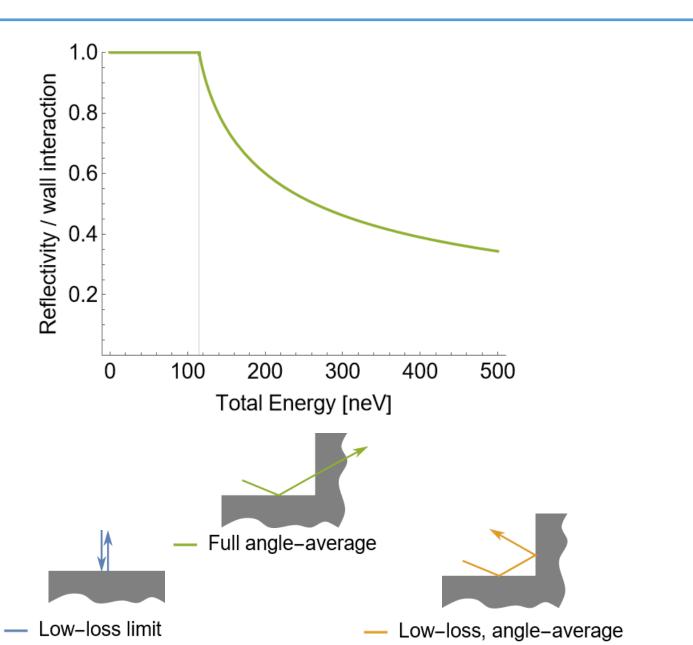
cold neutron

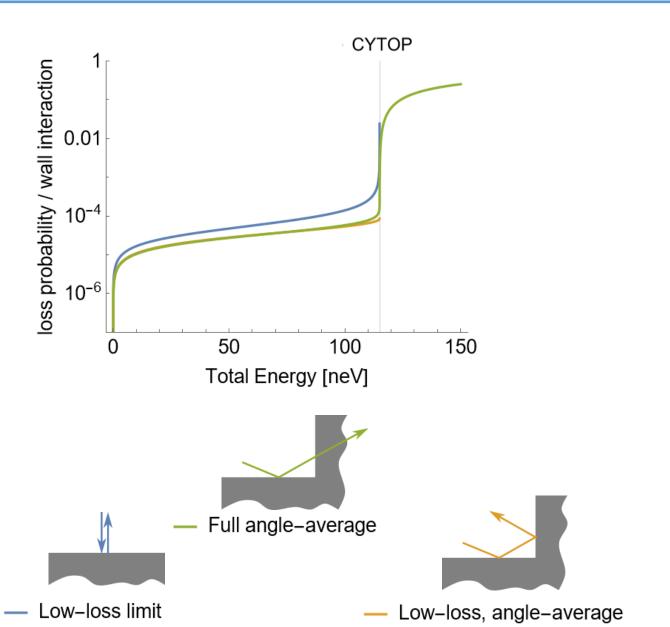

total loss (add partial rates)

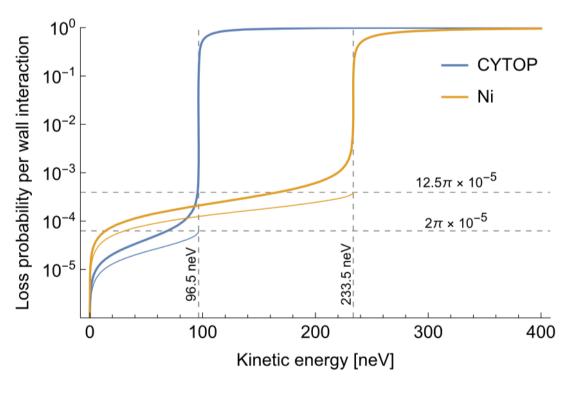
energy-dependent production/loss trap volume mean survival time $N = \int d^3 \mathbf{r} \int^{V_{\text{trap}}} dE \frac{dR}{dE} \tau(E) \sim \mathcal{V} \cdot R \cdot \langle \tau(E) \rangle$ total production rate

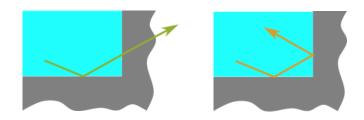

Delivering Cold Neutrons

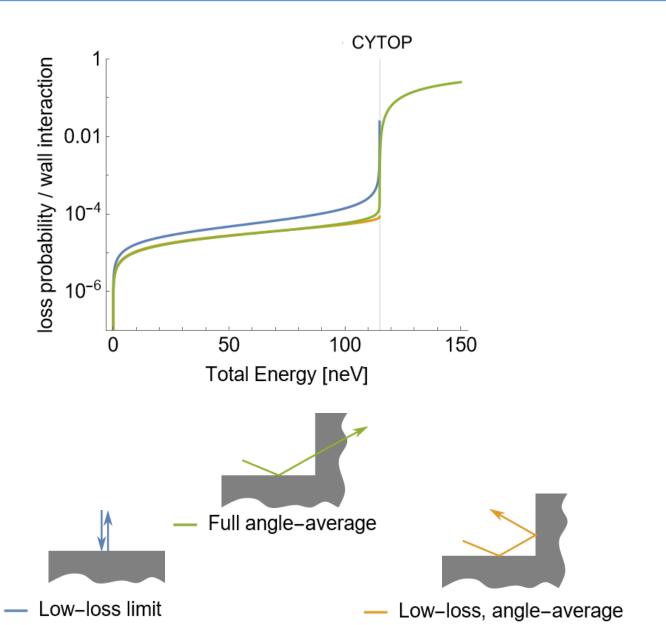


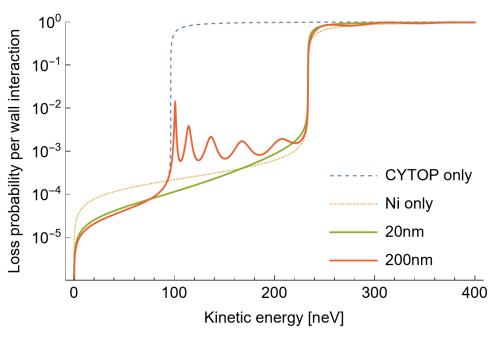

Delivering Cold Neutrons

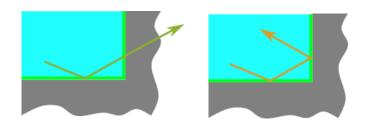


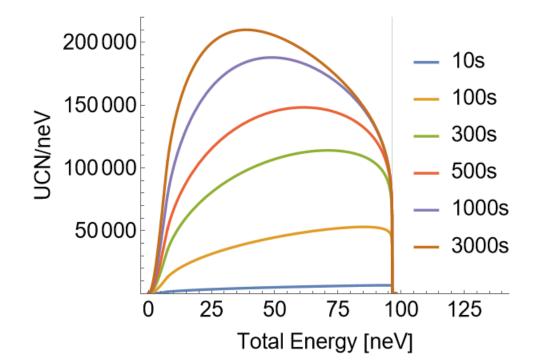

Delivering Cold Neutrons

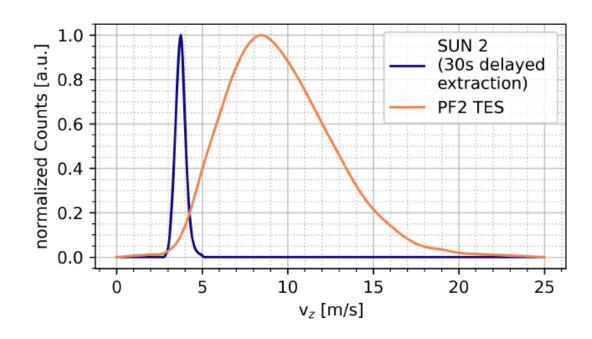




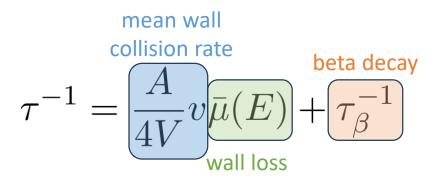


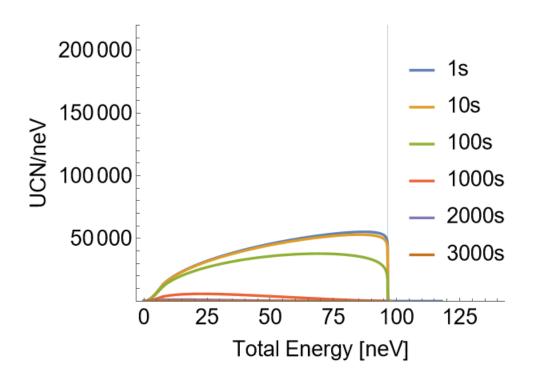

- Different materials
- Include effect of ambient medium

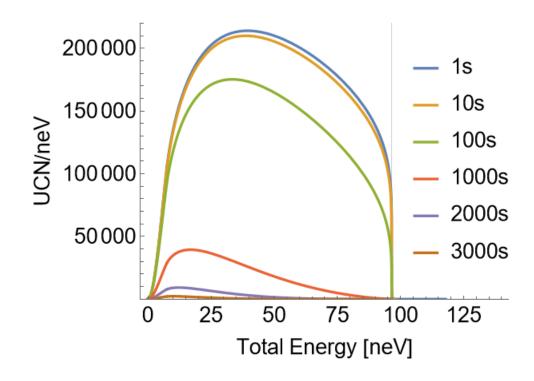

- Different materials
- Include effect of ambient medium
- Include surface layers

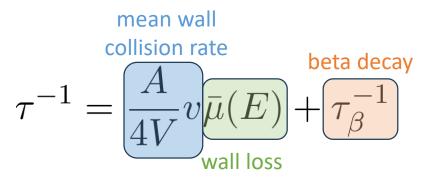

From wall loss to storage times

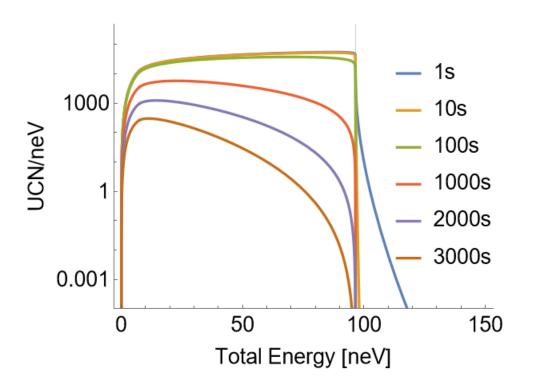
$$\tau^{-1} = \underbrace{\frac{A}{4V}v\bar{\mu}(E)}_{\text{wall loss}} + \underbrace{\frac{-1}{\tau_{\beta}^{-1}}}_{\text{wall loss}}$$

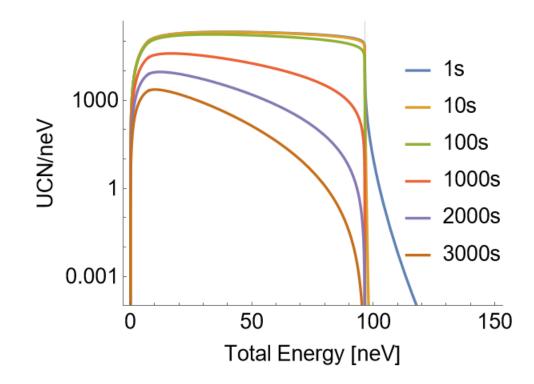

How long should we accumulate?

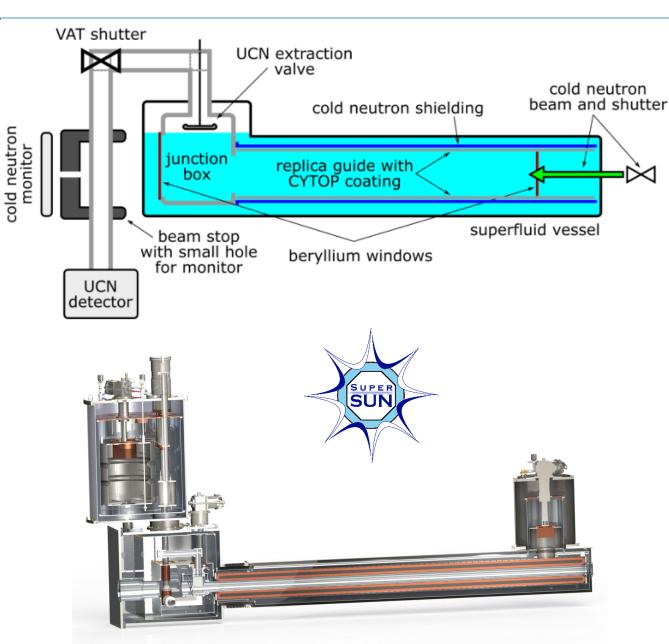

Get some idea of measured spectrum via time-of-flight

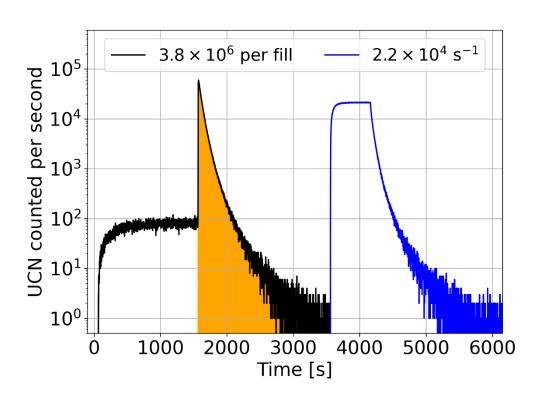

What if we extract after a holding delay?


(Fixed 100s accumulation time.)


(Fixed 3000s accumulation time.)


What about overcritical neutrons?


(Fixed 100s accumulation time.)


(Fixed 3000s accumulation time.)

Overview of the SuperSUN UCN Source

- Open converter / fill-and-empty
- Extraction / delivery efficiency

SuperSUN: High density UCN source

Phase I characterization

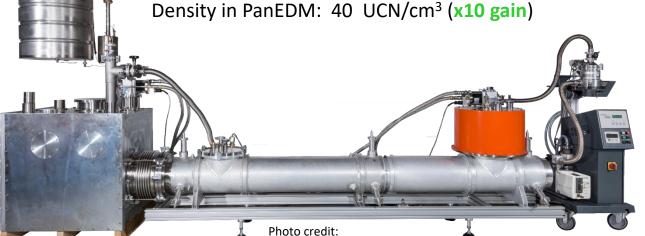
Measurement agrees with expectation (48 MW)

cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10⁶ (integral of blue peak)

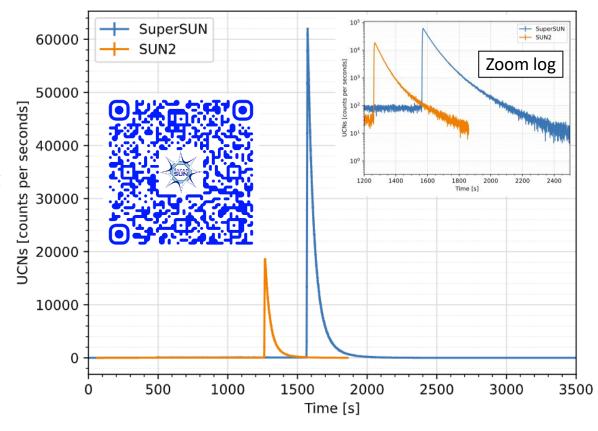
Source density: 270 UCN/cm³

Long storage times: 126000 UCN remaining after 20min


Expected density in PanEDM: 3.9 UCN/cm³ (58 MW)

Source characterization, PanEDM commissioning ongoing

Phase II expectation


Peak field: 2.1 T

Source density: 1670 UCN/cm³ (x5 gain)

Ecliptique – Laurent Thion.

Comparison to the prototype source SUN2

SuperSUN: High density UCN source

SUN 2 (30s delayed

extraction)

Phase I characterization

Measurement agrees with expectation (48 MW)

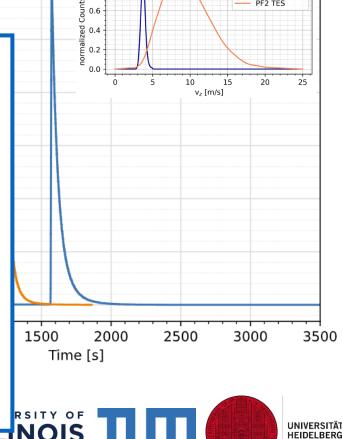
cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10⁶ (integral of blue peak)

Comparison to the prototype source SUN2

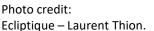
EPJ Web of Conferences **219**, 02006 (2019) PPNS 2018

https://doi.org/10.1051/epjconf/201921902006

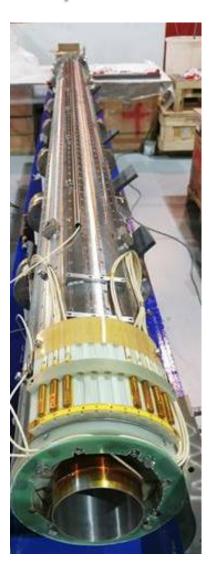

The PanEDM neutron electric dipole moment experiment at the ILL

David Wurm¹, Douglas H. Beck², Tim Chupp³, Skyler Degenkolb^{4,a}, Katharina Fierlinger¹, Peter Fierlinger¹, Hanno Filter¹, Sergey Ivanov⁵, Christopher Klau¹, Michael Kreuz⁴, Eddy Lelièvre-Berna⁴, Tobias Lins¹, Joachim Meichelböck¹, Thomas Neulinger², Robert Paddock⁶, Florian Röhrer¹, Martin Rosner¹, Anatolii P. Serebrov⁵, Jaideep Taggart Singh⁷, Rainer Stoepler¹, Stefan Stuiber¹, Michael Sturm¹, Bernd Taubenheim¹, Xavier Tonon⁴, Mark Tucker⁸, Maurits van der Grinten⁸, and Oliver Zimmer⁴

Ongoing work: spectrum, transfer efficiency and storage in external volumes, etc...


by material walls only, and a similar spectrum is expected. The converter volume is 12 liters (three times larger than in SUN2); scaling for this and the brighter cold beam implies a production rate on the order of 10^5 s⁻¹. At saturation, a total of 4×10^6 stored UCN is predicted (330 cm⁻³).

3.8×10⁶ UCN measured (fill-and-empty)



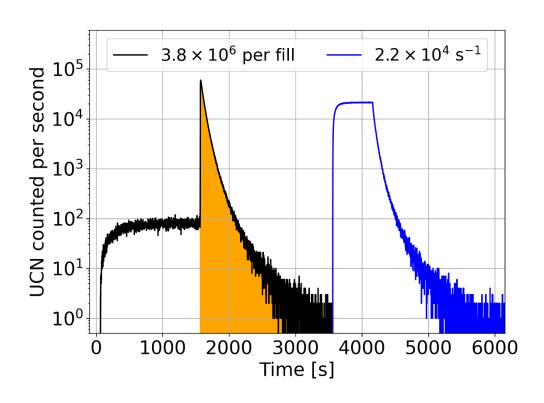
SuperSUN phase II: polarized UCN and magnetic storage

Benefits in phase II

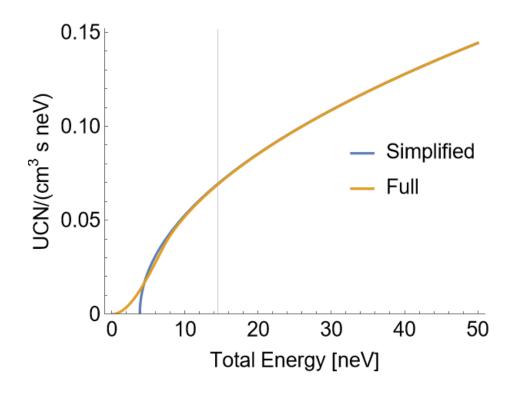
- Increase storage potential for one spin state
- Decrease loss rate for stored UCN
- → UCN already polarized within the source

Phase II expectations (gain over phase I)

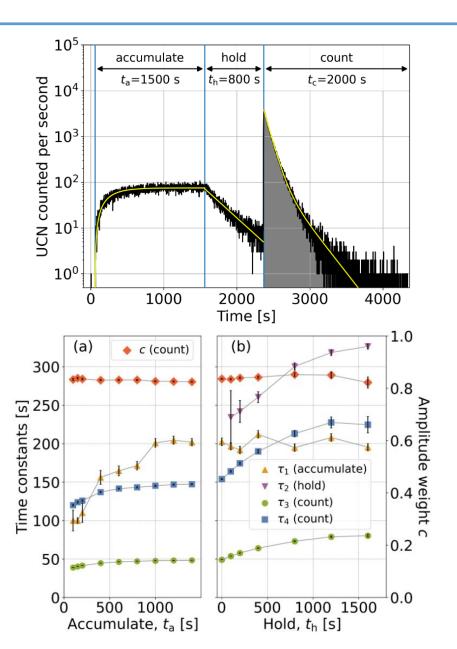
Peak field: 2.1 T


Source density: 1670 UCN/cm³ (x5 gain)
Density in PanEDM: 40 UCN/cm³ (x10 gain)

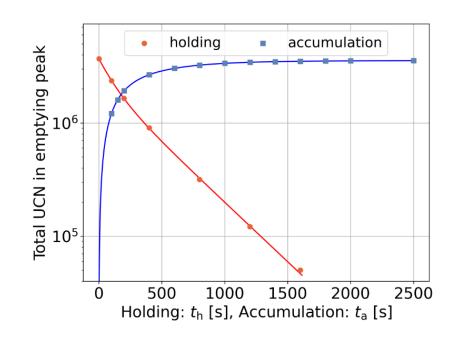
Status


Quench protection validated
Octupole trained up to 1 T
Preparing impregnation of the octupole, to reach nominal field

How much of the spectrum is extractable?


- Open converter / fill-and-empty
- Extraction / delivery efficiency

- Boost from leaving helium, vertical extraction
- E < 14.5 neV, ~4.5% of total

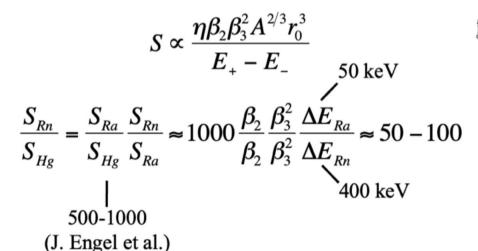

Source Characterization

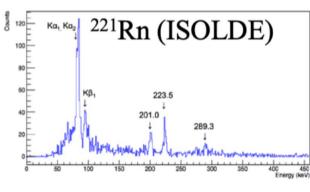
$$f_{\mathbf{a}}(t;\tau_{1}) = \frac{1 - e^{-t/\tau_{1}}}{t_{\mathbf{a}} - \tau_{1}(1 - e^{-t_{\mathbf{a}}/\tau_{1}})}$$

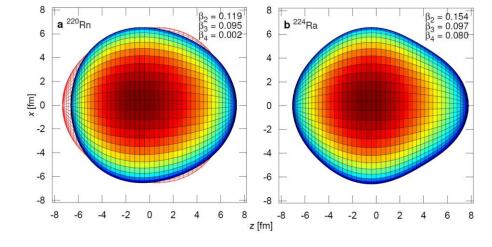
$$f_{\mathbf{h}}(t;\tau_{2}) = \frac{e^{-t/\tau_{2}}}{\tau_{2}\left(1 - e^{-t_{\mathbf{h}}/\tau_{2}}\right)}$$

$$f_{\mathbf{c}}(t;c,\tau_{3},\tau_{4}) = c\frac{e^{-t/\tau_{3}}}{\tau_{3}} + (1 - c)\frac{e^{-t/\tau_{4}}}{\tau_{4}}$$

Complementary atoms/nuclei

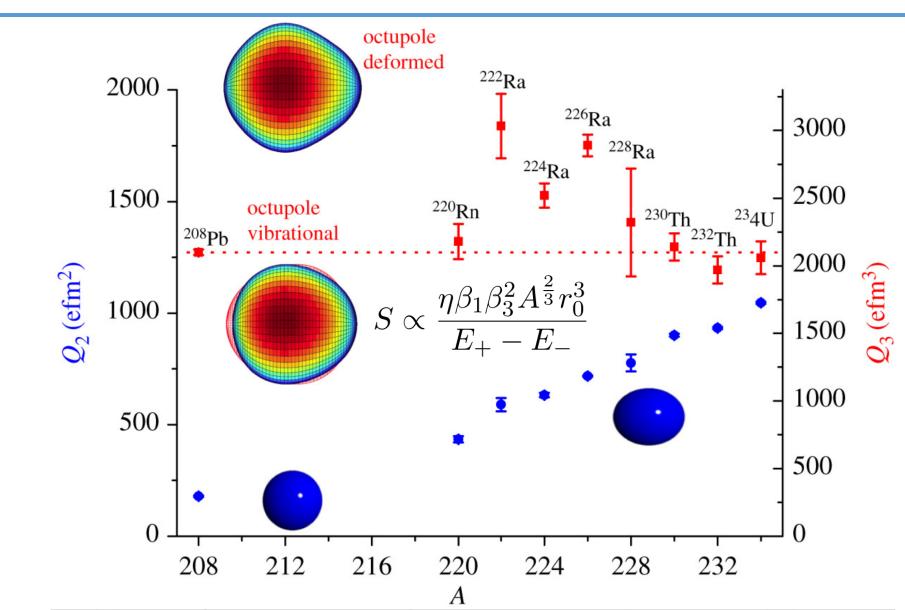

$$S = s_N d_N + \frac{m_N g_A}{F_{\pi}} \left[a_0 \bar{g}_{\pi}^{(0)} + a_1 \bar{g}_{\pi}^{(1)} + g_2 \bar{g}_{\pi}^{(2)} \right]$$


We do *not* expect large Schiff moments in ¹²⁹Xe/¹⁹⁹Hg (suppressed by the screening effect)


$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$

But deformed nuclei can actually have enhanced EDMs:

$$\longrightarrow d_A(\text{dia}) = \kappa_S S - [k_{C_T}^{(0)} C_T^{(0)} + k_{C_T}^{(1)} C_T^{(1)}]$$



²²³Rn: TBD

More nuclear structure

