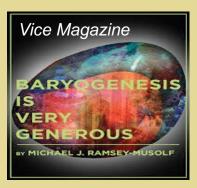
How Viable is Electroweak Baryogenesis?

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:



Science

Family

- <u>mjrm@sjtu.edu.cn</u>
- mjrm@umass.edu
- · 微信:mjrm-china
- https://michaelramseymusolf.com/

Friends

My pronouns: he/him/his

MeToo

Caltech-TDLI EDM Workshop May 12-14, 2025

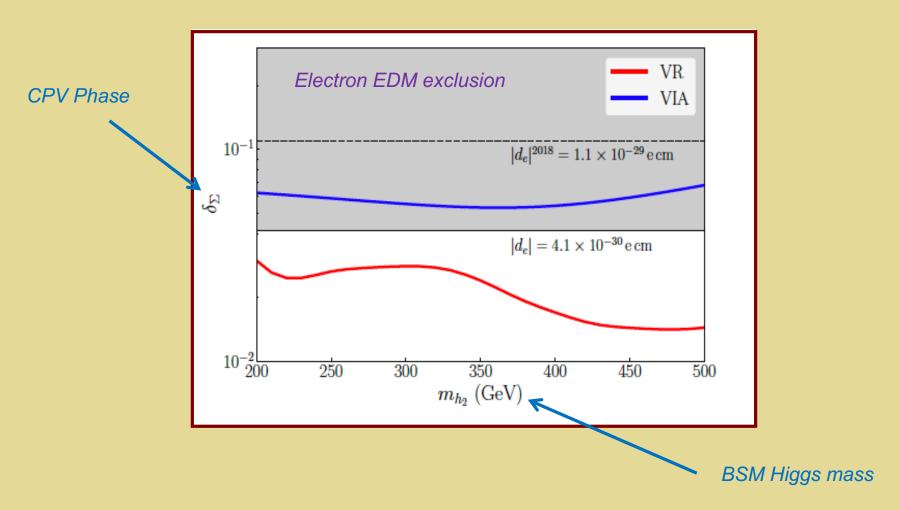
Key Ideas for this Talk

- EW baryogenesis (EWBG) is a theoretically well-motivated and experimentally testable baryogenesis scenario
- EDM searches provide most powerful probes of BSM CPV needed for EWBG
- Robust assessment of EWBG viability in light of EDMs requires development of early universe quantum transport theory → recent progress implies EWBG remains viable but the experimental target is within reach

EDM Interpretation & Multiple Scales Collider Searches Baryon Asymmetry BSM CPV Particle spectrum; also **Early universe CPV** scalars for baryon asym SUSY, GUTs, Extra Dim... Theoretical robustness Energy Scale d= 6 Effective Operators: "CPV Sources" fermion EDM, quark chromo EDM, 3 gluon, 4 fermion **QCD Matrix Elements Nuclear & atomic MEs** Schiff moment, other P- & d_n , $g_{\pi NN}$, ... T-odd moments, e-nucleus **Expt CPV**

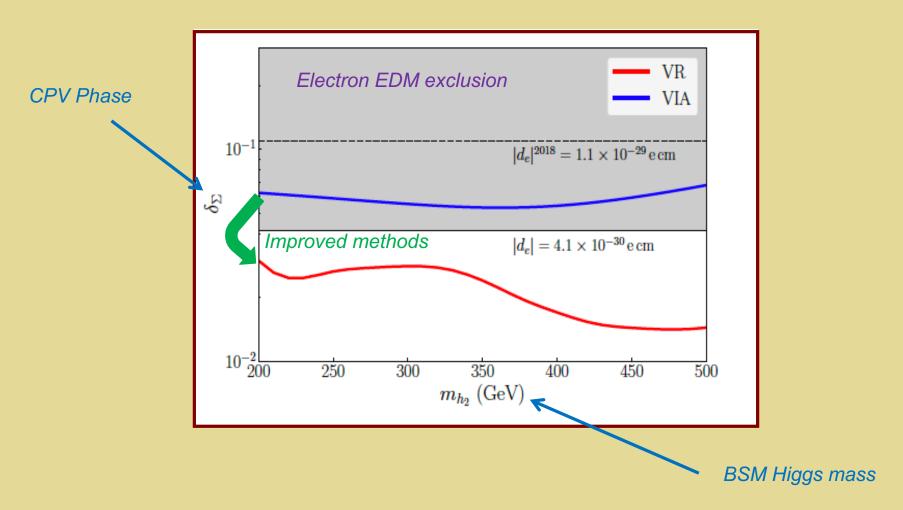
Electron EDM & BAU

Illustrative model:



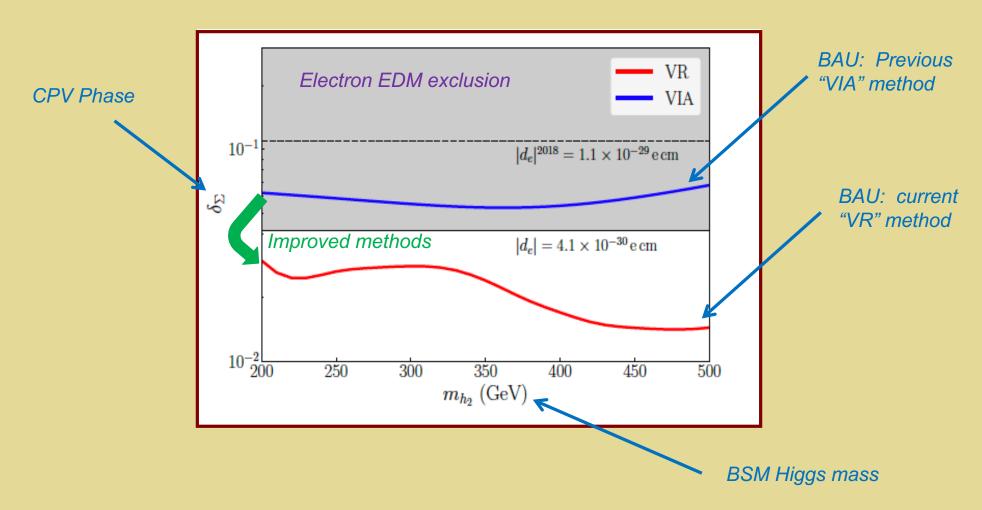
Electron EDM & BAU

Illustrative model:



Electron EDM & BAU

Illustrative model:



Implications

Other EDM searches & measurements of CPV observables in other systems (B mesons, Higgs decays) provide complementary probes of BSM CPV ->

electron EDM – EWBG confrontation is a key arena for assessing the early universe QFT framework for analyzing implications of these other CPV probes for baryogenesis

Outline

- I. Context for EWBG
- II. Theoretical Theoretical Challenge & Progress
- III. Illustrative Application: Scalar sector CPV
- IV. Outlook

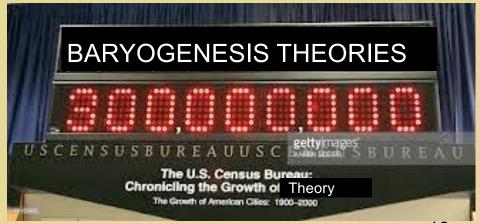
I. Context

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.66 \pm 0.04) \times 10^{-11}$$

Experiment can help:

- Discover ingredients
- Falsify candidates



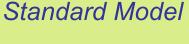
Ingredients for Baryogenesis

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

B violation (sphalerons)

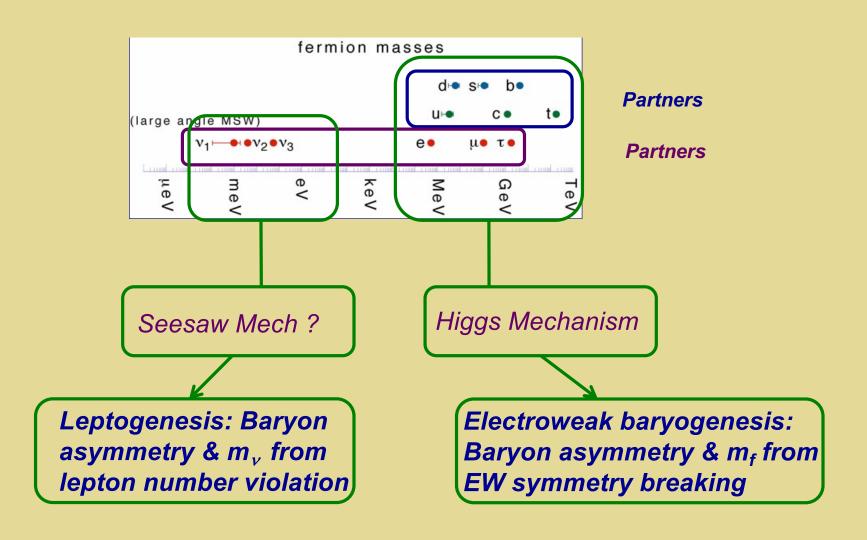
C & CP violation

 Out-of-equilibrium or CPT violation

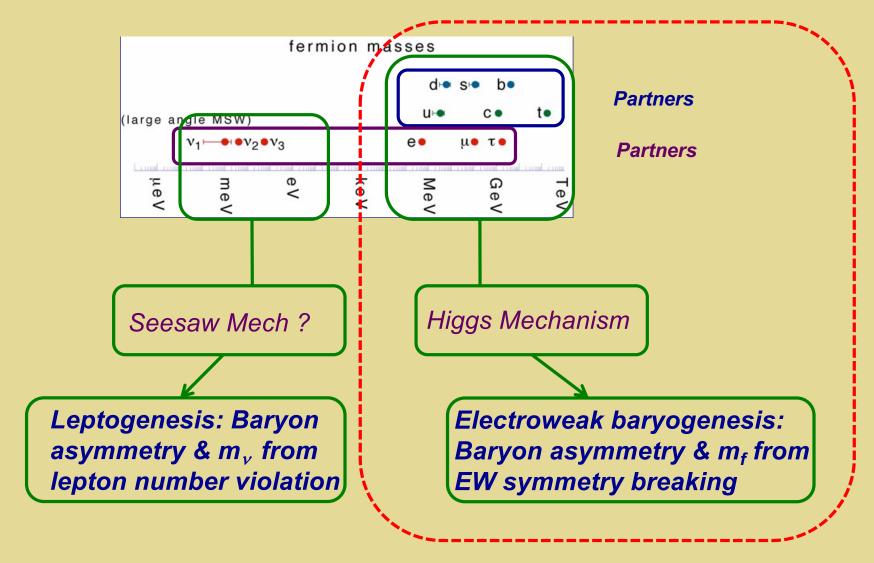


BSM

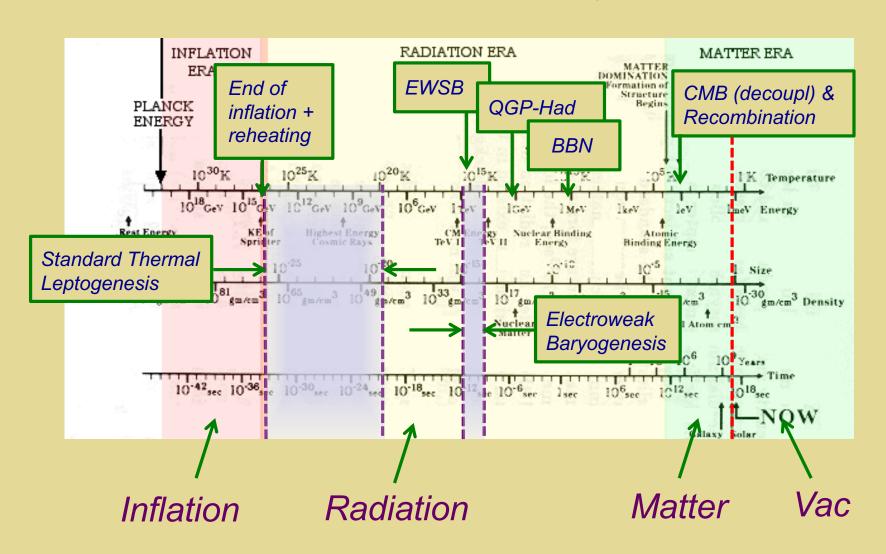
Fermion Masses & Baryon Asymmetry



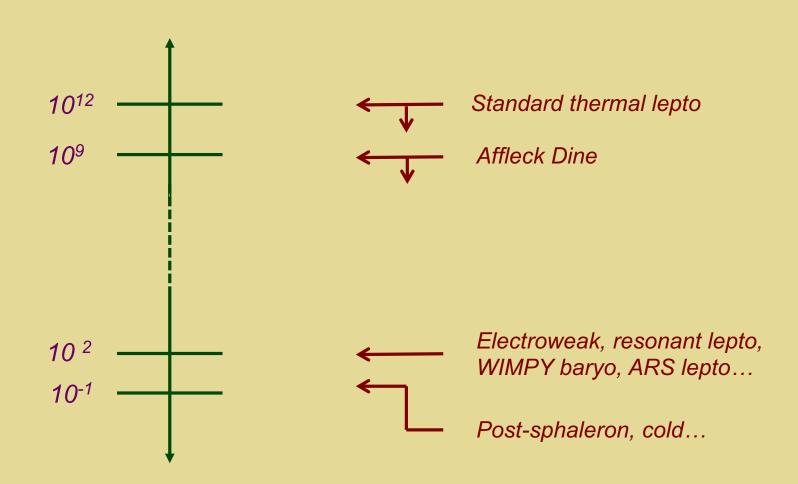
Fermion Masses & Baryon Asymmetry



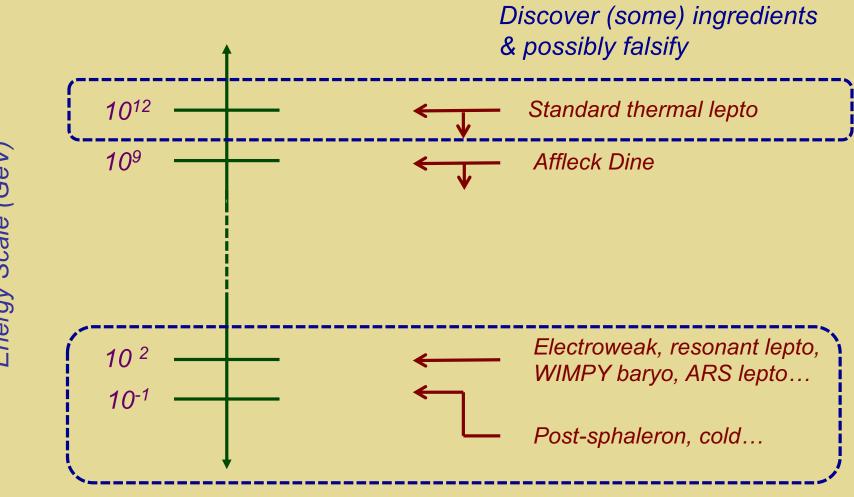
Cosmic History



Baryogenesis Scenarios



Baryogenesis Scenarios



Most directly testable

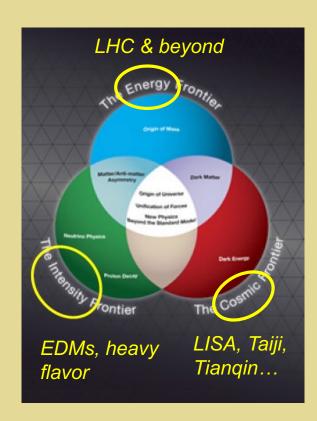
Electroweak Baryogenesis

Motivation

- BAU
 ↔ Higgs mechanism
- Experimentally testable

Viability

- Well motivated BSM scenarios
- Robust theory
- Consistent w/ experiment



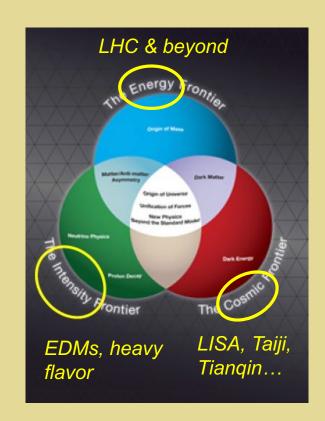
Electroweak Baryogenesis

Motivation

- BAU
 ↔ Higgs mechanism
- Experimentally testable

Viability

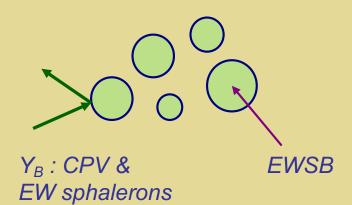
- Well motivated BSM scenarios
- Robust theory
 - Consistent w/ experiment



This talk

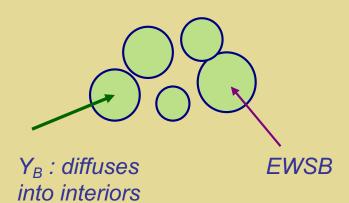
Electroweak Baryogenesis

1st order EWPT





1st order EWPT → "strong" to preserve Y_B



EWBG Ingredients

EW Sphalerons

St'd Model

Strong 1st Order EW
 Phase Transition

BSM Higgs

• Left-handed number density

BSM CPV

EWBG Ingredients

EW Sphalerons

St'd Model

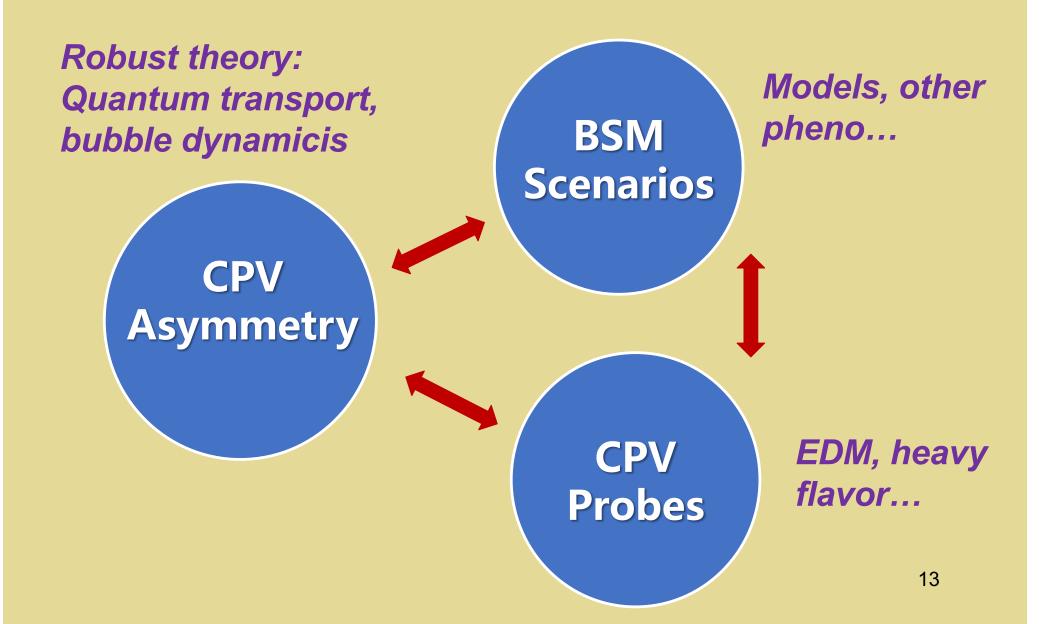
Strong 1st Order EW
 Phase Transition

BSM Higgs

• Left-handed number density

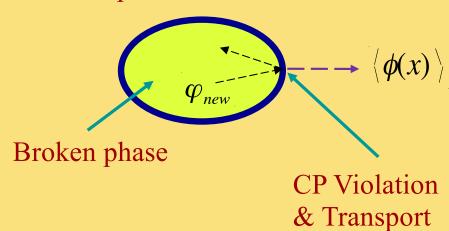
BSM CPV

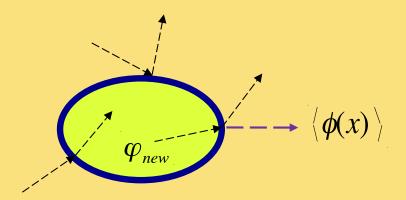
BSM CPV: Theory-Exp't Interplay



II. Theoretical Challenge & Progress

Unbroken phase





- CPV → left-handed fermion density n_L (x)
- Include diffusion, CP-cons thermalizing & particle number changing reactions

Unbroken phase $\varphi_{new} \longrightarrow \langle \phi(x) \rangle$ Broken phase $\begin{array}{c} \text{CP Violation} \\ \text{\& Transport} \end{array}$

- CPV → left-handed fermion density n_L (x)
- Include diffusion, CP-cons thermalizing & particle number changing reactions

$$\partial_{\mu} j_{\rm B}^{\mu} = -\frac{N_{\rm f}}{2} \left[k_{\rm ws}^{(1)}(T, x) n_{\rm B}(x) + k_{\rm ws}^{(2)}(T, x) n_{\rm L}(x) \right]$$

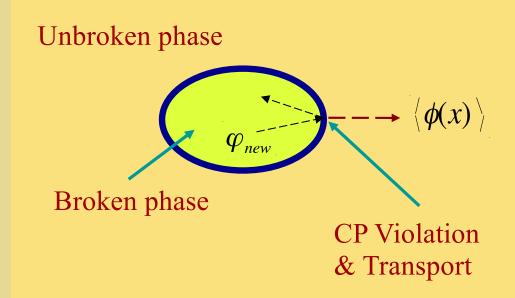
$$\Gamma_{WS}$$
 << Γ_{other}

Unbroken phase $\varphi_{new} \longrightarrow \langle \phi(x) \rangle$ Broken phase $CP \ Violation \\ \& \ Transport$

- CPV → left-handed fermion density n_L (x)
- Include diffusion, CPcons thermalizing & particle number changing reactions

Source
$$\partial_{\mu}j_{\rm B}^{\mu}=-\frac{N_{\rm f}}{2}\left[k_{\rm ws}^{(1)}(T,x)n_{\rm B}(x)+k_{\rm ws}^{(2)}(T,x)n_{\rm L}(x)\right]$$
 Relaxation

$$\Gamma_{\it WS}$$
 << $\Gamma_{\it other}$



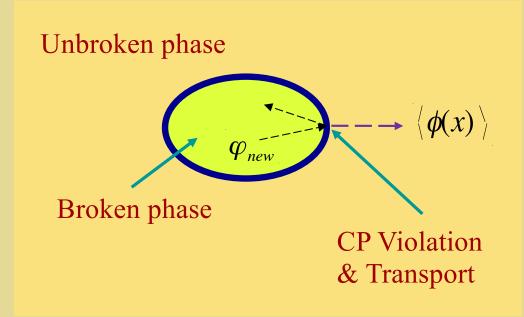
- CPV → left-handed fermion density n_L (x)
- Include diffusion, CPcons thermalizing & particle number changing reactions

$$Weak sph \ rates \qquad Source$$

$$\partial_{\mu}j_{\rm B}^{\mu}=-\frac{N_{\rm f}}{2}\left[k_{\rm ws}^{(1)}(T,x)n_{\rm B}(x)+k_{\rm ws}^{(2)}(T,x)n_{\rm L}(x)\right]$$

$$Relaxation$$

$$\Gamma_{
m WS}$$
 << $\Gamma_{
m other}$

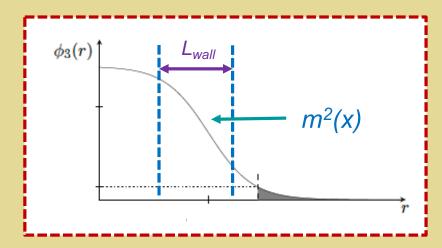


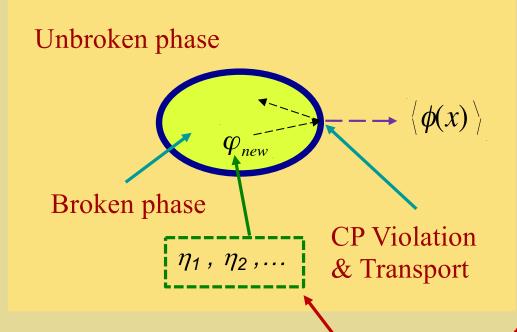
- Bubble dynamics
- CPV Sources
- Chemical & thermal equilibration, diffusion, flavor oscillations, ...

Unbroken phase $\varphi_{new} \longrightarrow \langle \phi(x) \rangle$ Broken phase $CP \ Violation \\ \& \ Transport$

- Particle masses depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma

- Bubble dynamics
- CPV Sources
- Chemical & thermal equilibration, diffusion, flavor oscillations, ...





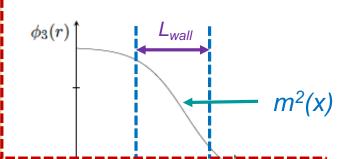
Transport Problem:

- Particle masses
 depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma

Bubble dynamics

CPV Sources

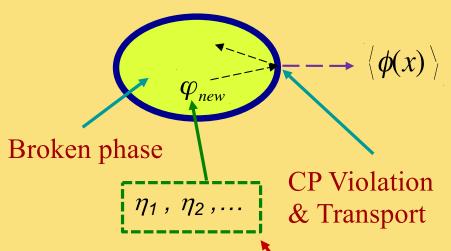
• Chemical & thermal equilibration, diffusion, flavor oscillations, ...



Flavor mixing → oscillations

Consider two (or more) fields η_j interacting with $\phi(x)$

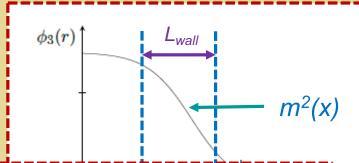
Unbroken phase



Transport Problem:

- Particle masses
 depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma

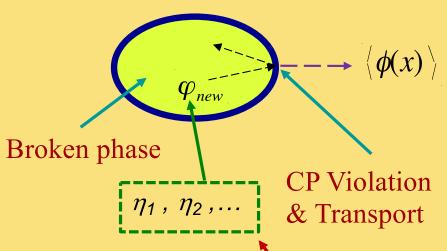
- Bubble dynamics
- CPV Sources
- Chemical & thermal equilibration, diffusion, flavor oscillations, ...



Flavor mixing → oscillations

$$M_{\eta}^{2}(x) = \begin{pmatrix} M_{1}^{2}(x) & R(x) e^{-i \alpha(x)} \\ R(x) e^{i \alpha(x)} & M_{2}^{2}(x) \end{pmatrix}$$

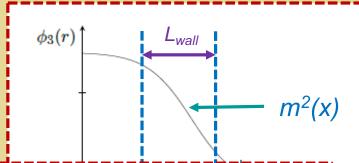
Unbroken phase



Transport Problem:

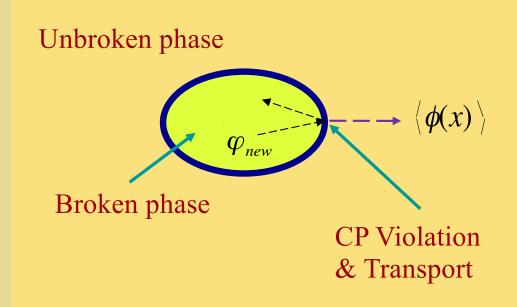
- Particle masses
 depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma

- Bubble dynamics
- CPV Sources
- Chemical & thermal equilibration, diffusion, flavor oscillations, ...



Flavor mixing → oscillations

$$M_{\eta}^{2}(x) = \begin{pmatrix} M_{1}^{2}(x) & R(x) e^{-i\alpha(x)} \\ R(x) e^{i\alpha(x)} & M_{2}^{2}(x) \end{pmatrix}$$

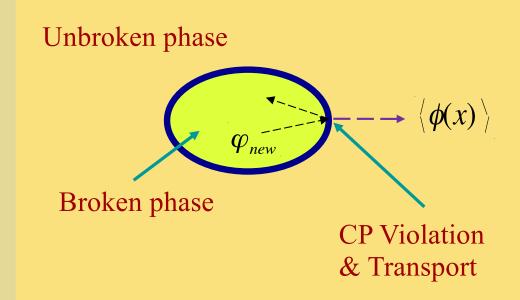


Transport Problem:

- Particle masses
 depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma

- Bubble dynamics
- CPV Sources
- Chemical & thermal equilibration, diffusion, flavor oscillations, ...

Quantum Kinetic Eqs

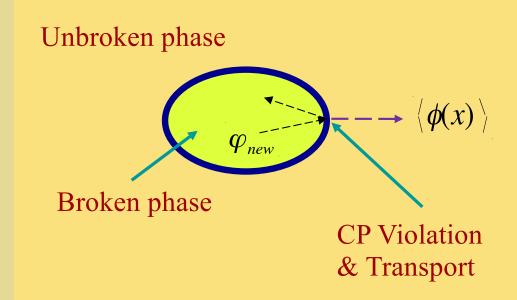


Transport Problem:

- Particle masses depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma
- Vev insertion approx (VIA): "perturbative" expansion in v(x) → CPV 1st order in v'(x) but theoretically fraught
- WKB/Semiclassical: re-sum v(x) → CPV 2nd order in v'(x)
- Vev resummation (VR): re-sum v(x) → CPV 1st order in v'(x) for flavor mixing & realistic inclusion of CPC plasma interactions

Closed Time Path

Quantum Kinetic Eqs



Transport Problem:

- Particle masses
 depend on spacetime
 → CPV sources
- Include CPC effects in thermal plasma
- Vev insertion approx (VIA): "perturbative" expansion in v(x) → CPV 1st order in v'(x) but theoretically fraught
- WKB/Semiclassical: re-sum v(x) → CPV 2nd order in v'(x)
- Vev resummation (VR): re-sum v(x) → CPV 1st order in v'(x) for flavor mixing & realistic inclusion of CPC plasma interactions

Closed Time Path

Quantum Kinetic Eqs

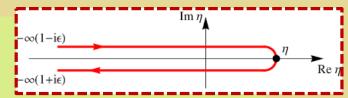
Cirlgliano, Lee, MJRM, Tulin 1012.3523; Clrigliano, Lee, Tulin 1106.0747

Systematic Baryogenesis:

Formalism: Kadanoff-Baym to Boltzmann

closed time path (CTP)

CTP or Schwinger-Keldysh Green's functions



$$\tilde{G}(x,y) = \left\langle P\varphi_a(x)\varphi_b^*(y) \right\rangle \tau_{ab} = \begin{bmatrix} G^t(x,y) & -G^*(x,y) \\ G^*(x,y) & -G^{\bar{t}}(x,y) \end{bmatrix}$$

- Appropriate for evolution of "in-in" matrix elements
- Contain full info on number densities: $n_{\alpha\beta}$
- Matrices in flavor space: (e, μ, τ) , $(\widetilde{t_L}, \widetilde{t_R})$, ...

$$\underline{\underline{\tilde{G}}} = \underline{\tilde{G}^0} + \underline{\tilde$$

Formalism: Kadanoff-Baym to Boltzmann

$$\left(2k^2 - \frac{\partial_x^2}{2} \right) G^{\gtrless}(k, x) \; = \underbrace{ \left\{ \; m^2(x) - 2i \, k \cdot \Sigma(x) + \Sigma(x)^2, \; G^{\gtrless}(k, x) \right\} }_{ + i \; \left\{ \Pi^h(k, x), G^{\gtrless}(k, x) \right\} + i \; \left\{ \Pi^{\gtrless}(k, x), G^h(k, x) \right\} }_{ + \frac{i}{2} \left[\Pi^{\gt}(k, x), G^{\lt}(k, x) \right] + \frac{i}{2} \left[G^{\gt}(k, x), \Pi^{\lt}(k, x) \right] \right) }$$

Wigner transformed Wightman functions

Constraint eq → dispersion relation

$$2k \cdot \partial_x G^{\gtrless}(k,x) \ = \ e^{-i\diamondsuit} \left(-i \left[m^2(x) - 2i \, k \cdot \Sigma(x) + \Sigma(x)^2, \, G^{\gtrless}(k,x) \right] \right. \\ \\ \left. + \left[\Pi^h(k,x), G^{\gtrless}(k,x) \right] + \left[\Pi^{\gtrless}(k,x), G^h(k,x) \right] \right. \\ \\ \left. + \frac{1}{2} \left\{ \Pi^{>}(k,x), G^{<}(k,x) \right\} - \frac{1}{2} \left\{ \Pi^{<}(k,x), G^{>}(k,x) \right\} \right)$$

Kinetic eq → dynamics for number densities

$$\diamondsuit\Big(A(k,x)B(k,x)\Big) \ = \ \frac{1}{2} \left(\frac{\partial A}{\partial x^{\mu}}\frac{\partial B}{\partial k_{\mu}} - \frac{\partial A}{\partial k_{\mu}}\frac{\partial B}{\partial x^{\mu}}\right)$$

"Diamond operator"

Systematic Baryo/leptogenesis:

Scale Hierarchies

→ power counting

EW Baryogenesis

Gradient expansion

$$\varepsilon_{\rm w} = L_{\rm int}/L_{\rm wall} << 1$$

Quasiparticle description

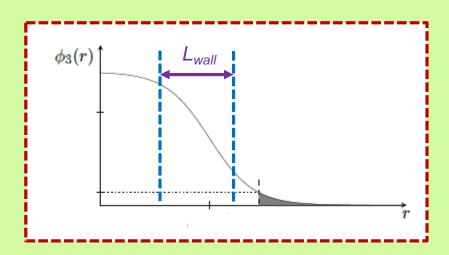
$$\varepsilon_{D} = \Gamma_{D} / \omega << 1$$

Thermal, but not too dissipative

$$\varepsilon_{\text{coll}} = \Gamma_{\text{coll}} / \omega << 1$$

Plural, but not too flavored

$$\varepsilon_{\rm osc} = \Delta\omega/T << 1$$



$$L_{int} \sim \lambda \sim T^{-1}$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

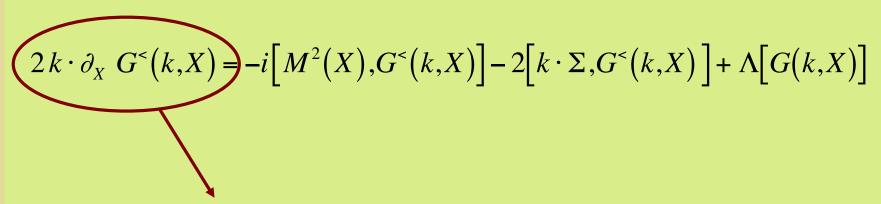
Lowest non-trivial order in grad's

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

Lowest non-trivial order in grad's



Spacetime evolution of densities

Systematic Systematic Baryogenesis:

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X)G^{<}(k,X)\right] - 2\left[k \cdot \Sigma,G^{<}(k,X)\right] + \Lambda \left[G(k,X)\right]$$

Diagonal after rotation to local mass basis:

$$M^{2}(X) = U^{+} m^{2}(X) U$$

$$\Sigma_{u}(X) = U^{+} \partial_{u} U \qquad (\tilde{t}_{L}, \tilde{t}_{R}) \to (\tilde{t}_{1}, \tilde{t}_{2})$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i\left[M^2(X),G^{<}(k,X)\right] - 2\left[k \cdot \Sigma,G^{<}(k,X)\right] + \Lambda\left[G(k,X)\right]$$

Flavor oscillations: flavor off-diag densities

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i\left[M^2(X),G^{<}(k,X)\right] - 2\left[k \cdot \Sigma,G^{<}(k,X)\right] + \Lambda\left[G(k,X)\right]$$

CPV in m²(X): for EWB, arises from spacetime varying complex phase(s) generated by interaction of background field(s) (Higgs vevs) with quantum fields

$$\Sigma_{\mu}(X) = U^{+} \partial_{\mu} U \rightarrow First order in v'(x)$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \Big[M^2(X), G^{<}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{<}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

Collision term: CP conserving interactions leading to thermalization, chemical equilibration, diffusion, damping,...

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

$$(u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) f_{m}(\vec{k}, X) = -\left[i\omega_{k} + u \cdot \Sigma, f_{m}(\vec{k}, X)\right] + C_{m}[f_{m}, \bar{f}_{m}](\vec{k}, X) \quad (2a)$$

$$(u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) \bar{f}_{m}(\vec{k}, X) = +\left[i\omega_{k} - u \cdot \Sigma, \bar{f}_{m}(\vec{k}, X)\right]$$

$$Distribution functions + C_{m}[\bar{f}_{m}, f_{m}](\vec{k}, X) \quad (2b)$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

$$(u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) f_{m}(\vec{k}, X) = -\left[i\omega_{k} + u \cdot \Sigma, f_{m}(\vec{k}, X)\right] + C_{m}[f_{m}, \bar{f}_{m}](\vec{k}, X) \quad (2a)$$

$$(u \cdot \partial_{X} + \vec{F} \cdot \nabla_{k}) \bar{f}_{m}(\vec{k}, X) = +\left[i\omega_{k} - u \cdot \Sigma, f_{m}(\vec{k}, X)\right]$$

$$Distribution functions + C_{m}[\bar{f}_{m}, f_{m}](\vec{k}, X) \quad (2b)$$

Phase in m^2 (x)

$$\Sigma^{\mu}(x) \equiv U^{\dagger}(x) \, \partial^{\mu} U(x) = \begin{pmatrix} 0 & -e^{-i\alpha} \\ e^{i\alpha} & 0 \end{pmatrix} \partial^{\mu} \theta + \begin{pmatrix} i \sin^2 \theta & \frac{i}{2} \sin 2\theta e^{-i\alpha} \\ \frac{i}{2} \sin 2\theta e^{i\alpha} & -i \sin^2 \theta \end{pmatrix} \partial^{\mu} \alpha \, .$$

Rotation to mass basis: θ

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) f_m(\vec{k}, X) = -\left[i\omega_k + u \cdot \Sigma, f_m(\vec{k}, X)\right] + \mathcal{C}_m[f_m, \bar{f}_m](\vec{k}, X) \qquad (2a)$$
$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) \bar{f}_m(\vec{k}, X) = +\left[i\omega_k - u \cdot \Sigma, \bar{f}_m(\vec{k}, X)\right] + \mathcal{C}_m[\bar{f}_m, f_m](\vec{k}, X) \quad , \quad (2b)$$

Effective ∆ω between particle & antiparticle flavor oscillations

$$\left(u \cdot \partial_X + \vec{F} \cdot \vec{\nabla} \right) f_{11} \supset - \left[i(\omega_k + \sin^2 \theta \, u \cdot \partial \alpha), f \right]_{11} + \cdots$$

$$\left(u \cdot \partial_X + \vec{F} \cdot \vec{\nabla} \right) \bar{f}_{11} \supset \left[i(\omega_k - \sin^2 \theta \, u \cdot \partial \alpha), \bar{f} \right]_{11} + \cdots$$

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{<}(k,X) = -i \left[M^2(X), G^{<}(k,X) \right] - 2 \left[k \cdot \Sigma, G^{<}(k,X) \right] + \Lambda \left[G(k,X) \right]$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) f_m(\vec{k}, X) = -\left[i\omega_k + u \cdot \Sigma, f_m(\vec{k}, X)\right] + \mathcal{C}_m[f_m, \bar{f}_m](\vec{k}, X) \quad (2a)$$
$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) \bar{f}_m(\vec{k}, X) = +\left[i\omega_k - u \cdot \Sigma, \bar{f}_m(\vec{k}, X)\right] + \mathcal{C}_m[\bar{f}_m, f_m](\vec{k}, X) \quad , \quad (2b)$$

Source of CPV asymmetry

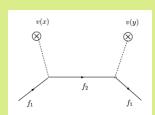
Effective $\Delta \omega$ between particle & antiparticle flavor oscillations

$$\left(u \cdot \partial_X + \vec{F} \cdot \vec{\nabla} \right) f_{11} \supset - \left[i(\omega_k + \sin^2 \theta \, u \cdot \partial \alpha), f \right]_{11} + \cdots$$

$$\left(u \cdot \partial_X + \vec{F} \cdot \vec{\nabla} \right) \bar{f}_{11} \supset \left[i(\omega_k - \sin^2 \theta \, u \cdot \partial \alpha), \bar{f} \right]_{11} + \cdots$$

Comparison with other approaches

VEV insertion approximation



- Perturbative in v(x)
- Flavor-mixing CPV
- Work in flavor basis

VEV resummation

$$M_\eta^2(x) = \left(\begin{array}{cc} M_1^2(x) & R(x) \, e^{-i \, \alpha(x)} \\ R(x) \, e^{i \, \alpha(x)} & M_2^2(x) \end{array} \right) \label{eq:mean_state}$$

- Local M²(x) diagonalization
- Flavor-mixing CPV
- Work in local mass basis

WKB / Semi-classical

$$S_{WKB} \sim \frac{1}{2E^2} (m^*m' - m^{*'}m)'$$

CPV source: second order in gradients from constraint eq

VEV resummation

$$S_{VR} \sim - \left[i(\omega_k + \sin^2 \theta \, u \cdot \partial \alpha), f \right]_{11}$$

• CPV source: first order in gradients

III. Illustrative Application

Scalar Field BSM CPV

Similar set up for BSM CPV in fermion sector (e.g., Yukawa interactions in 2HDM) but avoid complications due to multiple spin d.o.f.

"Two-Step EW Baryogenesis" & EDMs

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

H → Set of "SM" fields: 2 HDM

(SUSY: "TNMSSM", Coriano...)

EDMs are Two Loop

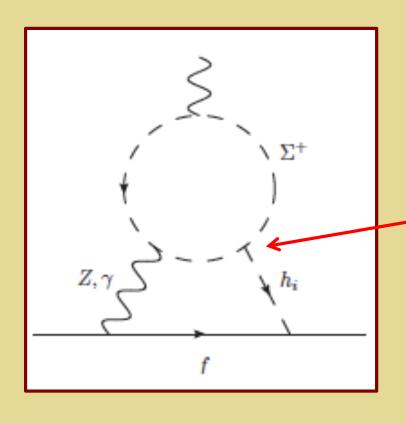
Two CPV Phases:

 δ_{Σ} : Triplet phase

 δ_{S} : Singlet phase

Insensitive to δ_S : electrically neutral \rightarrow "partially secluded"

"Two-Step EW Baryogenesis" & EDMs



EDMs are Two Loop

Two CPV Phases:

 δ_{Σ} : δ_{S} :

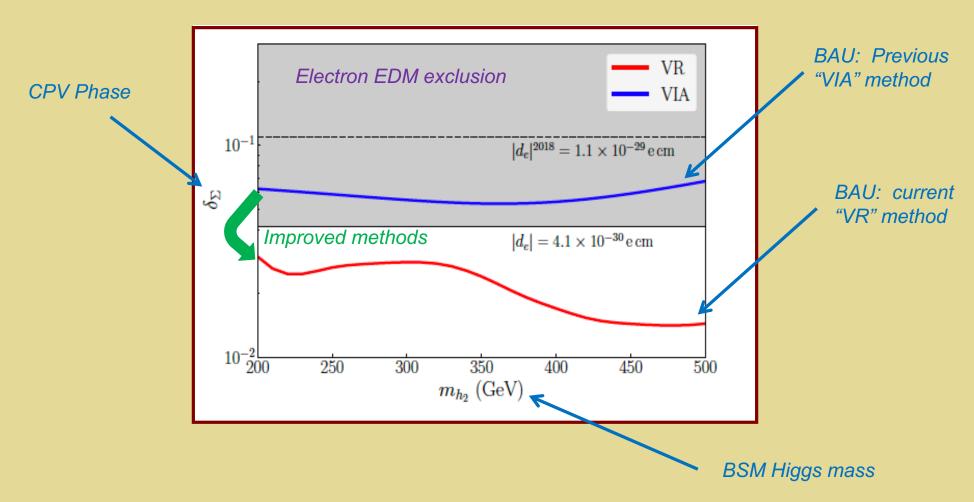
Triplet phase
Singlet phase

Insensitive to δ_S : electrically neutral \rightarrow "partially secluded"

Consider nonzero δ_{Σ} , $< \Sigma^{0} > (x)$, $< S > (x) \rightarrow \alpha(x)$

Electron EDM & BAU

Illustrative model: two-step EWBG w/ scalar sector CPV

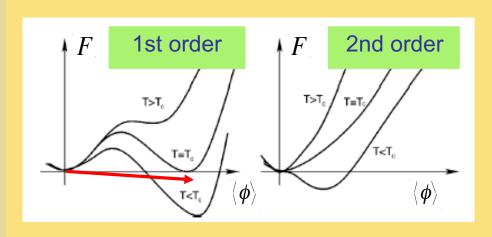


IV. Outlook: How Viable is EWBG?

- EW baryogenesis (EWBG) is a theoretically well-motivated and experimentally testable baryogenesis scenario
- EDM searches provide most powerful probes of BSM CPV needed for EWBG
- Robust assessment of EWBG viability in light of EDMs requires development of early universe quantum transport theory → recent progress implies EWBG remains viable but the experimental target is within reach

Back Up Slides

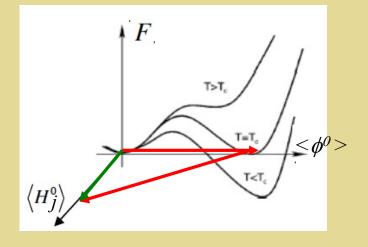
Two-Step EW Baryogenesis

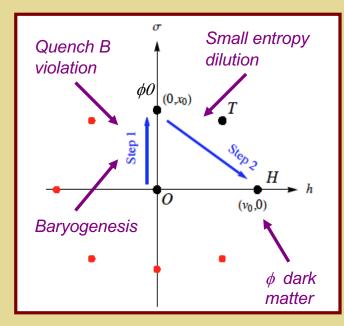


Increasing m_h

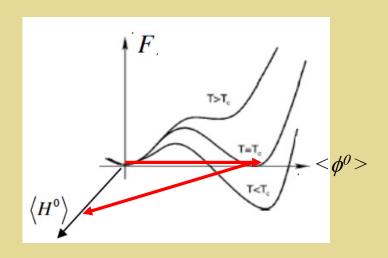
$$\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H$$

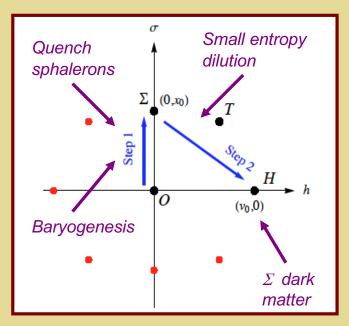
Real Triplet
$$\phi \rightarrow \Sigma^+, \Sigma^-, \Sigma^0$$





Two-Step EW Baryogenesis





Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

H → Set of "SM" fields: 2 HDM

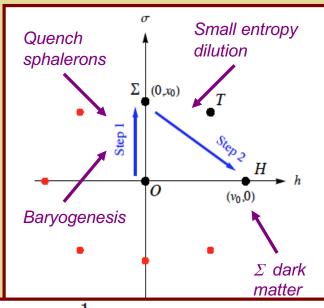
(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

 δ_{Σ} : Triplet phase

 δ_{S} : Singlet phase

Two-Step EW Baryogenesis



$$V_{H\phi} \supset \frac{1}{2} H_1^{\dagger} H_2 \left(a_1 S^2 + a_2 \Sigma^2 \right) + \text{h.c.}$$

 $+ \sum_{i=1,2} \left[y_1^{ii} S^2 + y_2^{ii} \Sigma^2 + y_3^{ii} A^2 \right] H_i^{\dagger} H_i$.

$$\delta_{\Sigma} = Arg (a_2^* v_1 v_2^*)$$

 $\delta_{S} = Arg (a_1^* v_1 v_2^*)$

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

H → Set of "SM" fields: 2 HDM

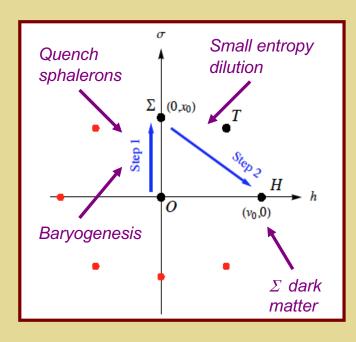
(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

 δ_{Σ} : Triplet phase

 δ_{S} : Singlet phase

Two Step EWBG

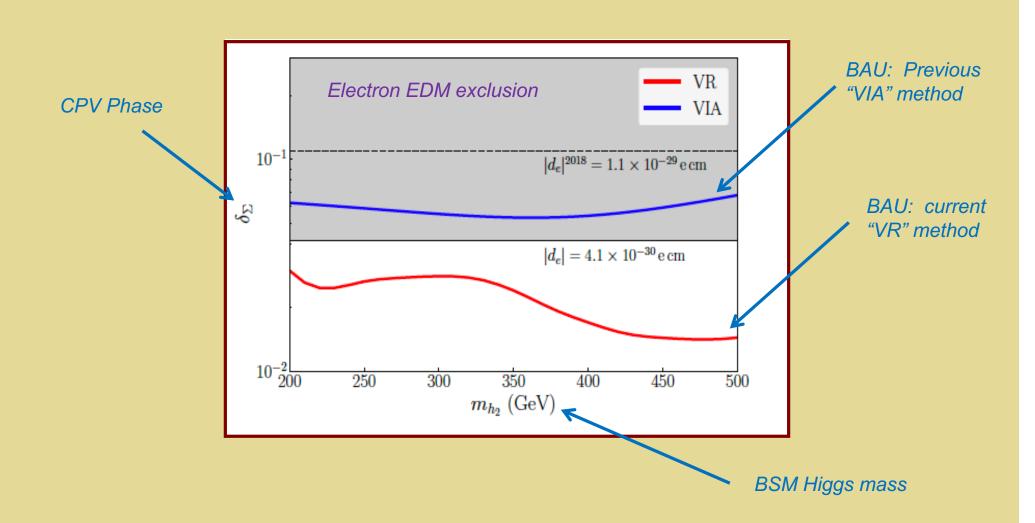


$$V_{H\phi} \supset \frac{1}{2} H_1^{\dagger} H_2 \left(a_1 S^2 + a_2 \Sigma^2 \right) + \text{h.c.}$$

 $+ \sum_{i=1,2} \left[y_1^{ii} S^2 + y_2^{ii} \Sigma^2 + y_3^{ii} A^2 \right] H_i^{\dagger} H_i$.

- BAU produced in step 1:
 - Nonzero δ_{Σ} , $< \Sigma^{0} > (x)$, < S > (x) $\rightarrow \alpha(x)$
 - Flavor mixing during step 1: $(H_1, H_2) \rightarrow (H_A, H_B)$
 - $H_{A,B}$ densities $\rightarrow f_L$ densities via Yukawa interactions
- BAU transferred to present Higgs phase in step 2

Electron EDM & BAU



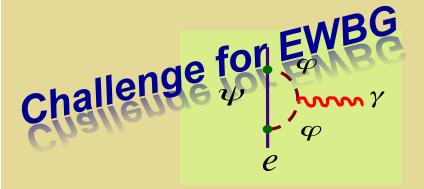
Experimental Situation: EDMs

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 -35	10 -30
HfF+	4.1 x 10 ⁻³⁰ **	10-38	10 -30
n	1.8 x 10 ⁻²⁶	10 -31	10 -26

^{* 95%} CL ** e-equivalent

Mass Scale Sensitivity



$$sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

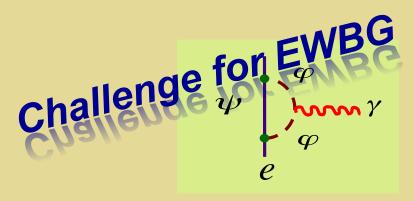
M < 500 GeV
$$\rightarrow$$
 sin ϕ_{CP} < 10⁻²

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 -33	10 -30
HfF+	4.1 x 10 ⁻³⁰ **	10-38	10 -30
n	1.8 x 10 ⁻²⁶	10 -31	10 -26

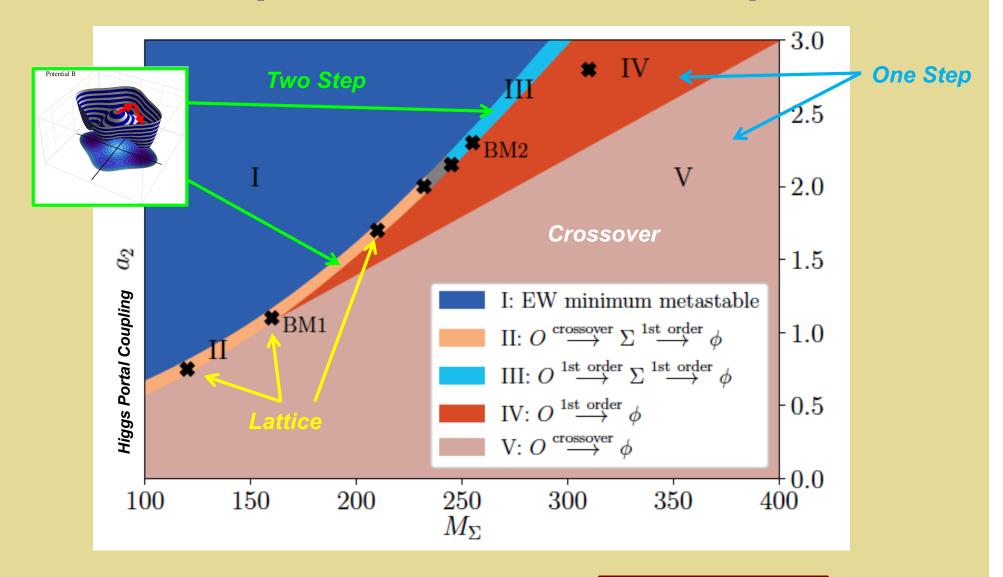
* 95% CL ** e-equivalent

Mass Scale Sensitivity



- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
 - CPV is "partially secluded"

Two-Step EWSB: SM + Real Triplet



Niemi, R-M, Tenkanen, Weir 2005.11332

→ PRL 126 (2021) 17

- 1 or 2 step
- Non-perturbative

Some Details

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{\scriptscriptstyle <}(k,X) = -i \Big[M^2(X), G^{\scriptscriptstyle <}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{\scriptscriptstyle <}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) f_m(\vec{k}, X) = -\left[i\omega_k + u \cdot \Sigma, f_m(\vec{k}, X)\right] \\ + \mathcal{C}_m[f_m, \bar{f}_m](\vec{k}, X) \qquad (2a)$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) \bar{f}_m(\vec{k}, X) = +\left[i\omega_k - u \cdot \Sigma, f_m(\vec{k}, X)\right]$$
Distribution functions
$$+ \mathcal{C}_m[\bar{f}_m, f_m](\vec{k}, X) \qquad (2b)$$

2001Ce of CPV asymmetry

Effective Δω between particle & antiparticle flavor oscillations

Phase in m^2 (x)

$$\Sigma^{\mu}(x) \equiv U^{\dagger}(x) \, \partial^{\mu} U(x) = \begin{pmatrix} 0 & -e^{-i\alpha} \\ e^{i\alpha} & 0 \end{pmatrix} \partial^{\mu} \theta + \begin{pmatrix} i \sin^2 \theta & \frac{i}{2} \sin 2\theta e^{-i\alpha} \\ \frac{i}{2} \sin 2\theta e^{i\alpha} & -i \sin^2 \theta \end{pmatrix} \partial^{\mu} \alpha \, .$$

Rotation to mass basis: 6

Formalism: Kadanoff-Baym to Boltzmann

Kinetic eq (approx) in Wigner space:

$$2k \cdot \partial_X G^{\scriptscriptstyle <}(k,X) = -i \Big[M^2(X), G^{\scriptscriptstyle <}(k,X) \Big] - 2 \Big[k \cdot \Sigma, G^{\scriptscriptstyle <}(k,X) \Big] + \Lambda \Big[G(k,X) \Big]$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) f_m(\vec{k}, X) = -\left[i\omega_k + u \cdot \Sigma, f_m(\vec{k}, X)\right] \\ + \mathcal{C}_m[f_m, \bar{f}_m](\vec{k}, X) \qquad (2a)$$

$$(u \cdot \partial_X + \vec{F} \cdot \nabla_k) \bar{f}_m(\vec{k}, X) = +\left[i\omega_k - u \cdot \Sigma, f_m(\vec{k}, X)\right]$$
Distribution functions
$$+ \mathcal{C}_m[\bar{f}_m, f_m](\vec{k}, X) \qquad (2b)$$

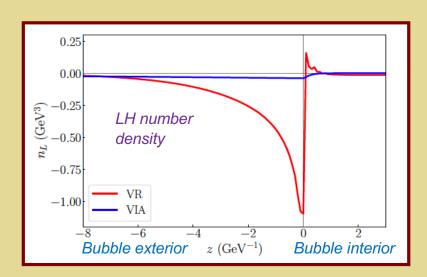
2001Ce of CPV asymmetry

Effective Δω between particle & antiparticle flavor oscillations

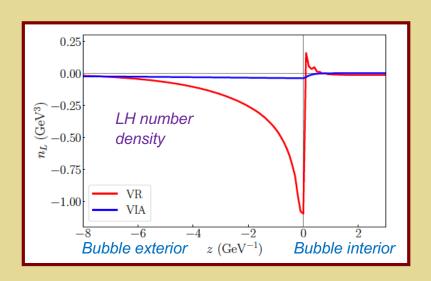
Phase in m^2 (x)

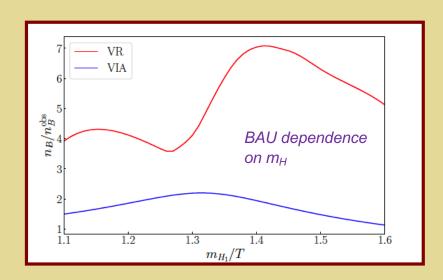
$$\Sigma^{\mu}(x) \equiv U^{\dagger}(x) \, \partial^{\mu} U(x) = \begin{pmatrix} 0 & -e^{-i\alpha} \\ e^{i\alpha} & 0 \end{pmatrix} \partial^{\mu} \theta + \begin{pmatrix} i \sin^2 \theta & \frac{i}{2} \sin 2\theta e^{-i\alpha} \\ \frac{i}{2} \sin 2\theta e^{i\alpha} & -i \sin^2 \theta \end{pmatrix} \partial^{\mu} \alpha \, .$$

Rotation to mass basis: 6

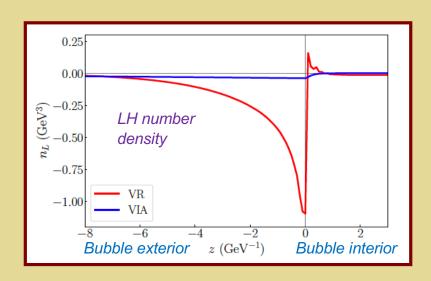


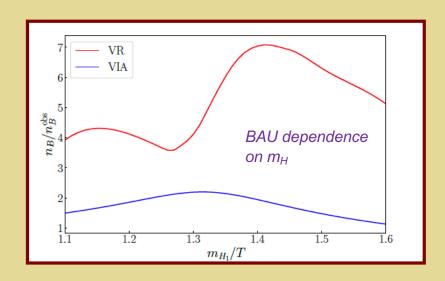
Yuan-Zhen Li, MJRM, Jiang-Hao Yu 2404.19197

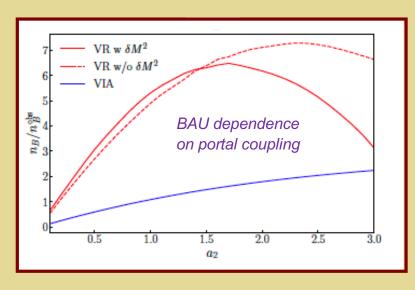




Yuan-Zhen Li, MJRM, Jiang-Hao Yu 2404.19197

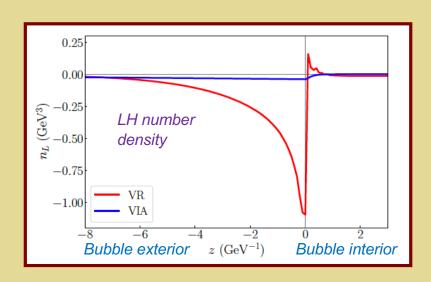


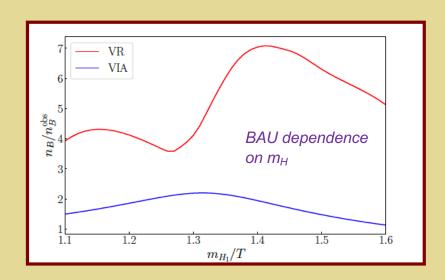


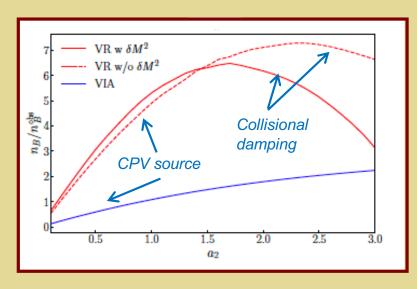


$$a_2 H_1^* H_2 \Sigma^2 + c.c.$$

Yuan-Zhen Li, MJRM, Jiang-Hao Yu 2404.19197



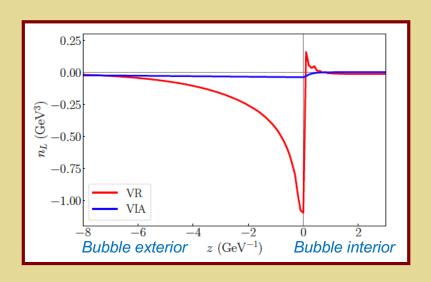


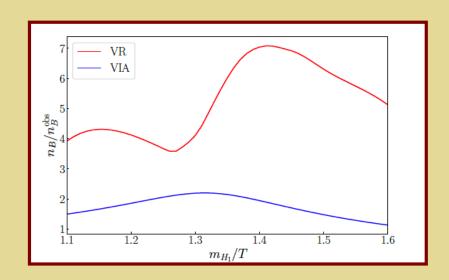


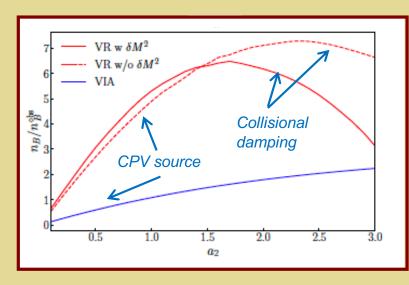
$$a_2 H_1^* H_2 \Sigma^2 + c.c.$$

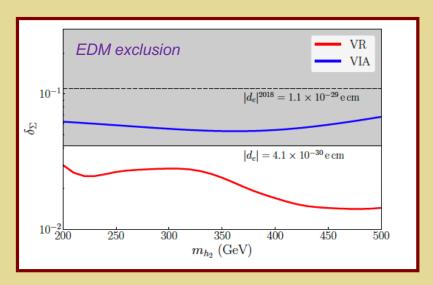
Yuan-Zhen Li, MJRM, Jiang-Hao Yu 2404.19197

Two-Step EWBG: Transport Theory & EDMS





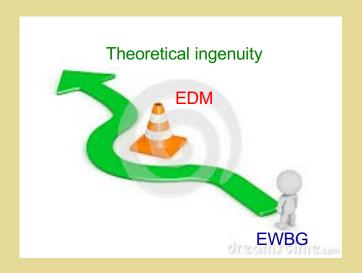




Lessons

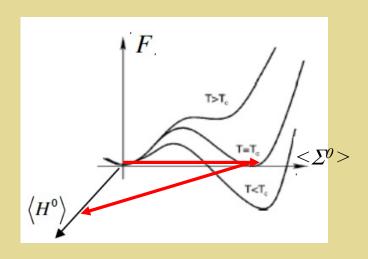
- For a given set of model parameters can get larger BAU with full resummation in presence of CPV flavor mixing → more "relaxed" EDM constraints
- BAU is larger than in WKB / semiclassical framework: 1st order vs 2nd order in gradients
- Realistic accounting for CP-conserving interactions in collision terms

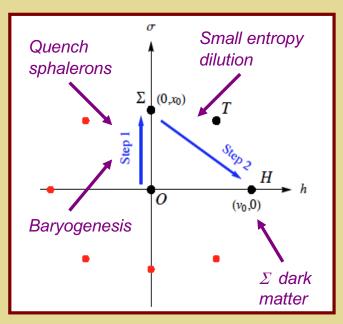
CPV for EWBG



Now apply to other models, e.g., 2HDM, NMSSM,...

CPV: General Considerations



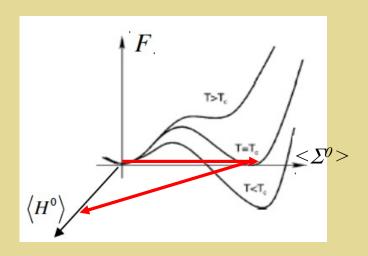


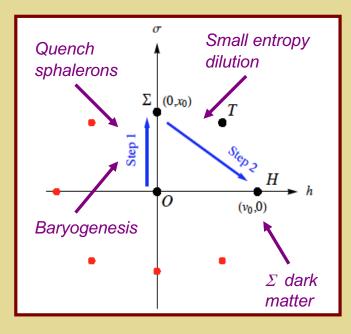
 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 $H \rightarrow Set$ of "SM" fields, including at least one that breaks EWSB at during second step & persists to T = 0 (e.g., single H, 2HDM...)

What are possibilities for generating CPV asymmetries needed for baryogenesis during the first step?

2-Step EWBG: Rich Array of Scenarios

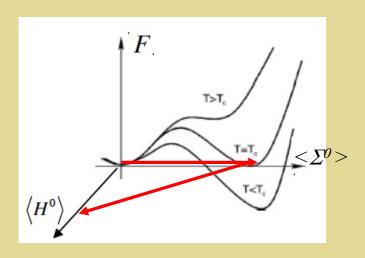


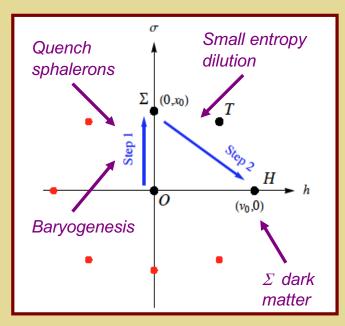


 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of ϕ_j , then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j

2-Step EWBG: Rich Array of Scenarios

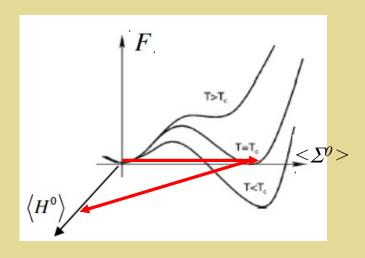




 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of ϕ_j , then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j 78

Illustrative Study



CPV asymmetry generated in SM sector via interactions with the ϕ_i

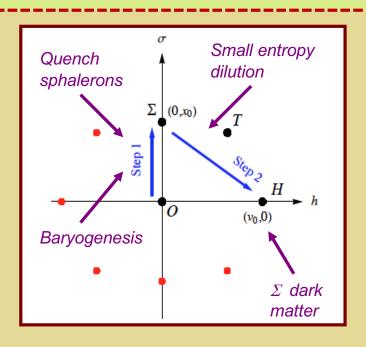
Considerations:

- Renormalizable interactions in scalar sector
- At least two new sector scalar fields get spacetime varying vevs v_{NEW} (x) during step 1, at least one of which is EWSB → origin of CPV phase α (x)
- At least two scalar fields mix due to v_{NEW} (x), at least one of which is in SM sector

Two-Step EW Baryogenesis

$$V_{H\phi} \supset \frac{1}{2} H_1^{\dagger} H_2 \left(a_1 S^2 + a_2 \Sigma^2 \right) + \text{h.c.}$$
$$+ \sum_{i=1,2} \left[y_1^{ii} S^2 + y_2^{ii} \Sigma^2 + y_3^{ii} A^2 \right] H_i^{\dagger} H_i \quad .$$

Step 1: Σ , S vevs \rightarrow non-zero $H_{1,2}$ densities \rightarrow $t_{L,R}$ via Yukawa interactions \rightarrow BAU in " σ " phase (Σ , S vevs)



Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

H → Set of "SM" fields: 2 HDM

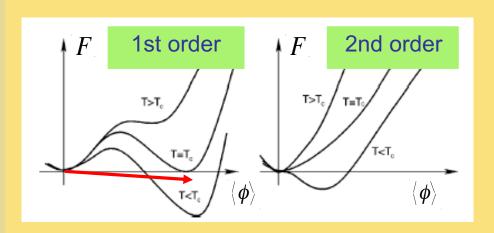
(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

 δ_{Σ} : Triplet phase

 δ_{S} : Singlet phase

Concrete Realization: Real Triplet

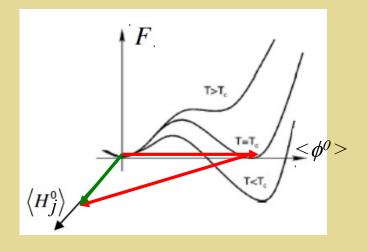


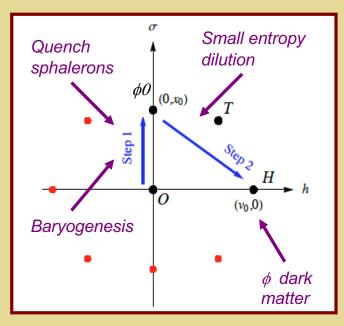
Increasing m_h

Real Triplet

$$\Sigma^{+}$$
 , Σ^{-} Σ^{0}

Two-step EWPT & dark matter





EWBG Ingredients

EW Sphalerons

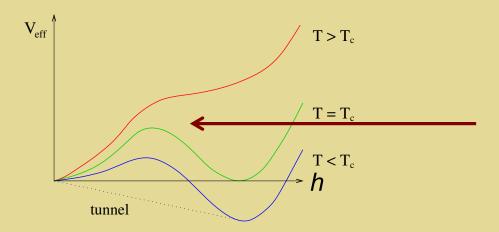
 Strong 1st Order EW Phase Transition

BSM Higgs

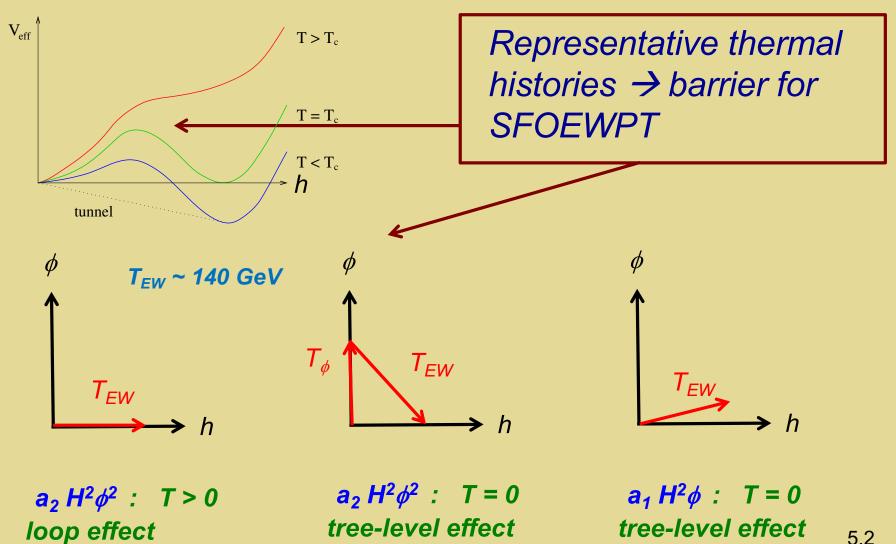
• Left-handed number density

BSM CPV

First Order EWPT from BSM Higgs



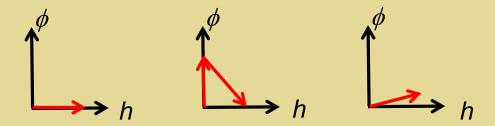
First Order EWPT from BSM Higgs



Simple Higgs portal models:

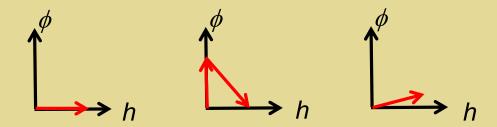
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$



Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)



Phenomenology

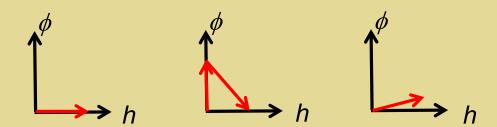
$$h_1 = \sin\theta \ s + \cos\theta \ h$$

$$h_2 = \cos\theta \ s - \sin\theta \ h$$

 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

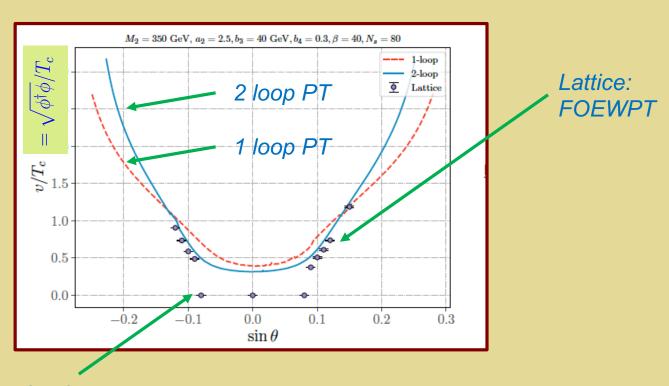


Phenomenology

$$h_1 = \sin \theta s + \cos \theta h$$
$$h_2 = \cos \theta s - \sin \theta h$$

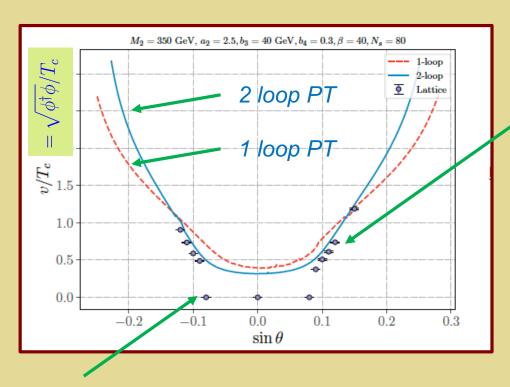
 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Singlets: Lattice vs. Pert Theory

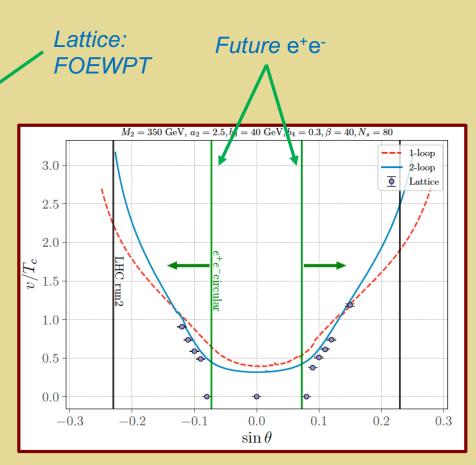


Lattice: Crossover

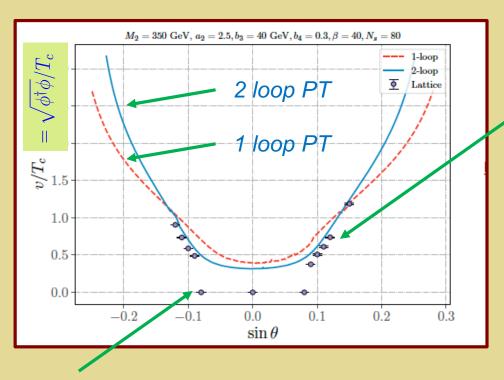
Singlets: Lattice vs. Pert Theory



Lattice: Crossover

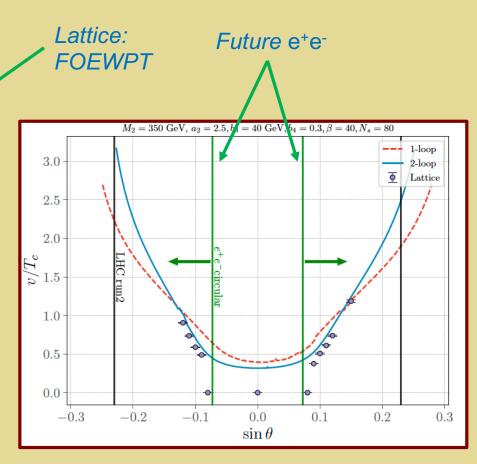


Singlets: Lattice vs. Pert Theory



Lattice: Crossover

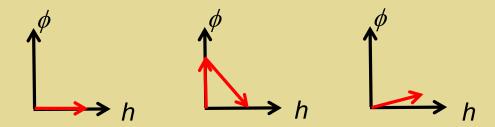
- Lattice: crossover-FOEWPT boundary
- FOEWPT region: PT-lattice agreement
- Pheno: precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized



Simple Higgs portal models:

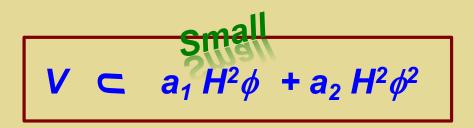
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

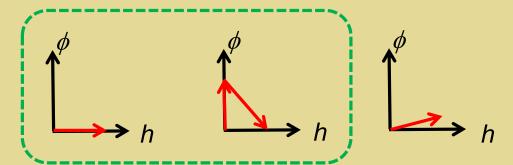
$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$



Simple Higgs portal models:

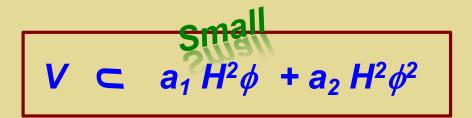
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

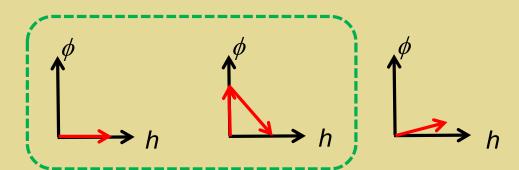




Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

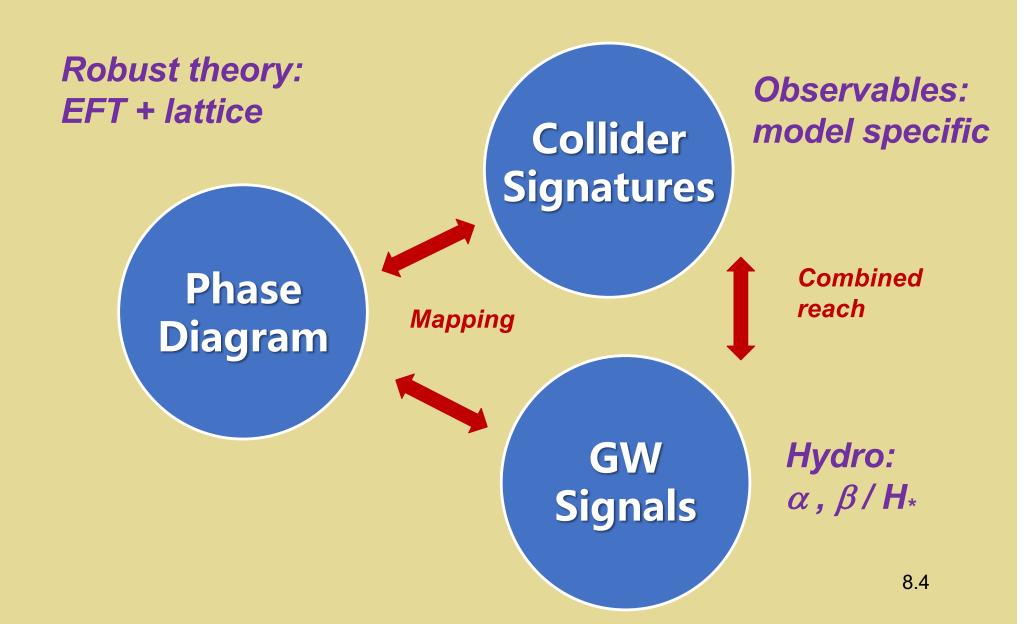




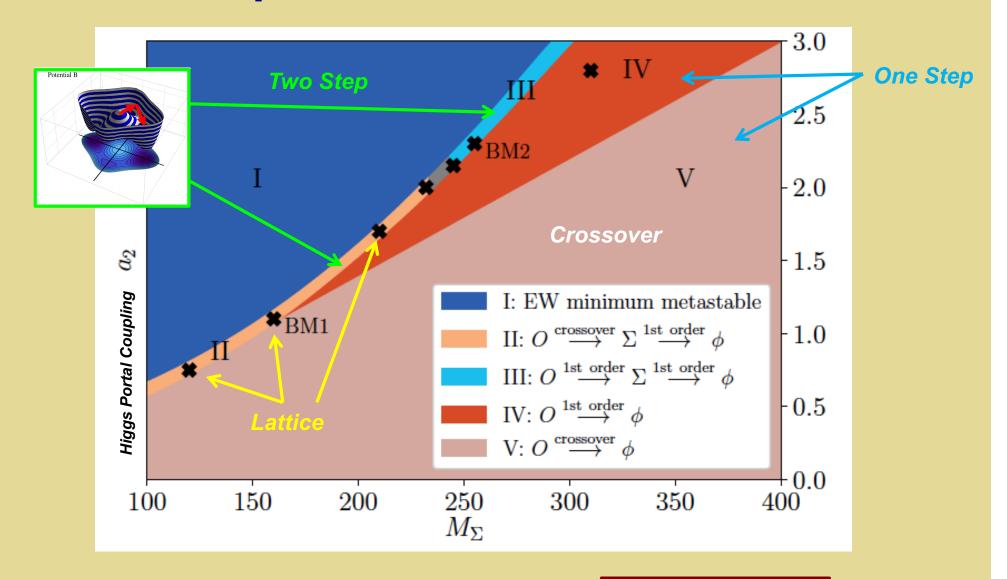
Phenomenology

- Gravitational waves
- Collider: $h \rightarrow \gamma \gamma$, dis charged track, NLO e⁺e⁻ \rightarrow Zh...

BSM EWPT: Inter-frontier Connections



Real Triplet & EWPT: Novel EWSB

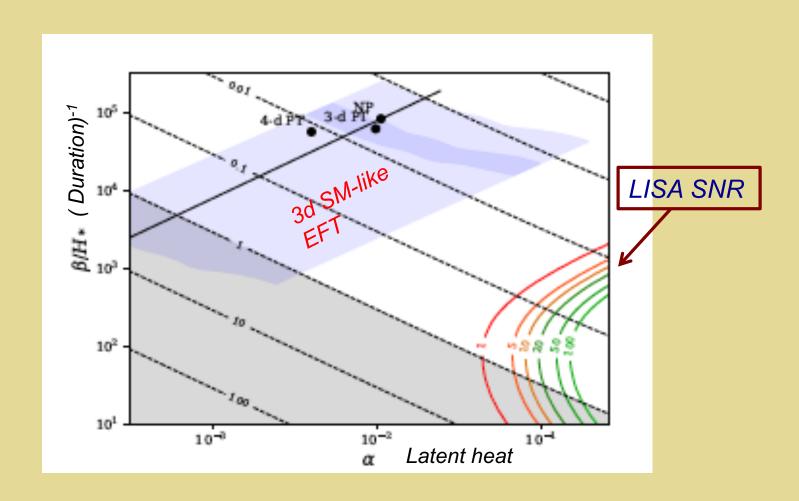


Niemi, R-M, Tenkanen, Weir 2005.11332

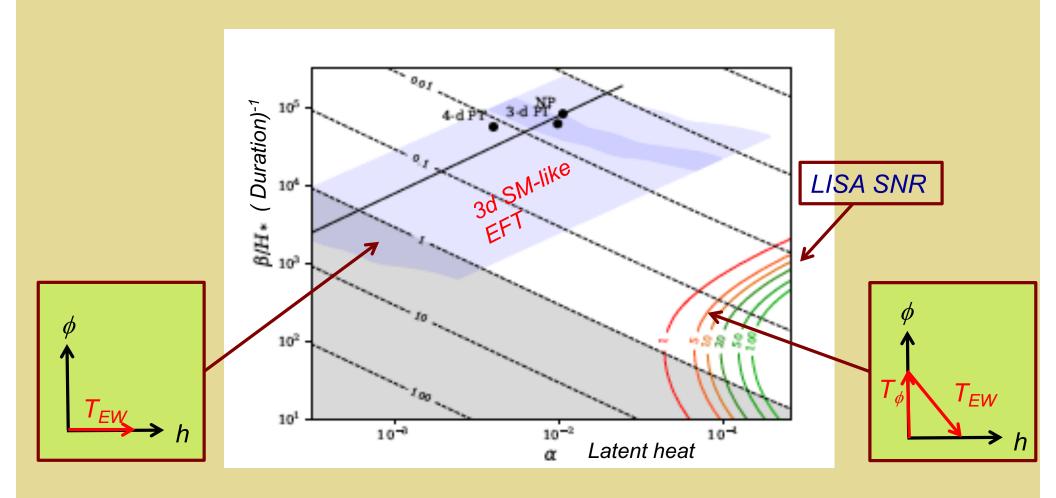
→ PRL 126 (2021) 17

- 1 or 2 step
- Non-perturbative

BSM Scalar: EWPT & GW



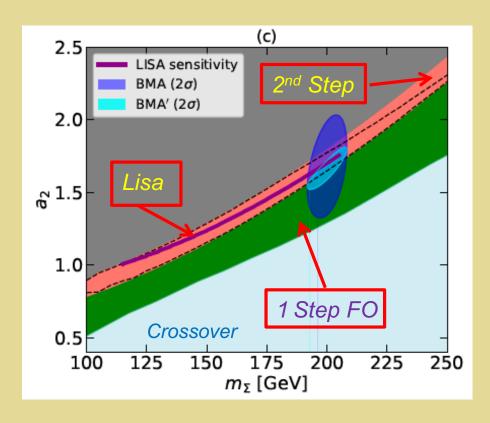
BSM Scalar: EWPT & GW



GW & EWPT Phase Diagram LISA (a) (b) 2.5 metastable 104 two-step one-step 2.0 crossover 10³ $a_2 = 1.68$ _€ 1.5 γ/Н* (Duration) 10¹ 10² 1.0 1 Step FO $m_{5} = 150 \text{ GeV}$ Crossover $m_{\Sigma} = 200 \text{ GeV}$ 0.5 175 225 150 200 100 125 250 10^{-2} m_{Σ} [GeV] Latent heat

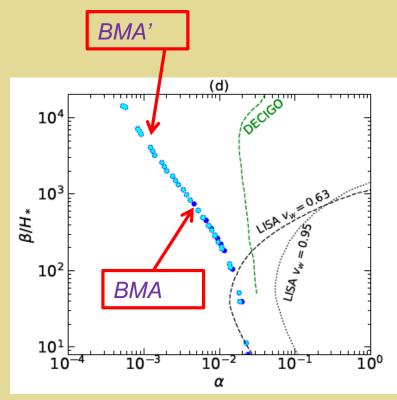
- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable
- Significant GW sensitivity to portal coupling

GW & EWPT Phase Diagram



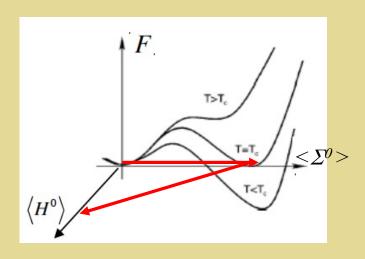
BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

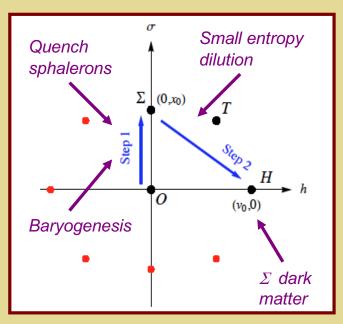
BMA': BMA + $\Sigma^0 \rightarrow ZZ$



- Two-step
- EFT+ Non-perturbative

General Considerations



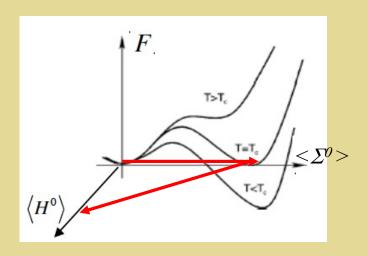


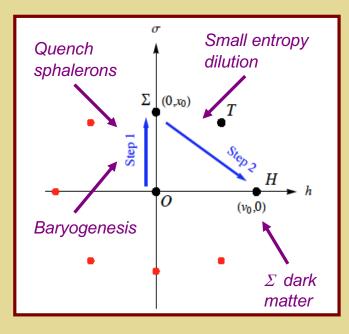
 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 $H \rightarrow Set$ of "SM" fields, including at least one that breaks EWSB at during second step & persists to T = 0 (e.g., single H, 2HDM...)

What are possibilities for generating CPV asymmetries needed for baryogenesis during the first step?

2-Step EWBG: Rich Array of Scenarios

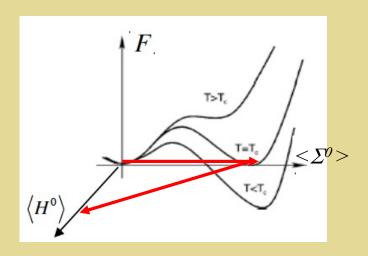


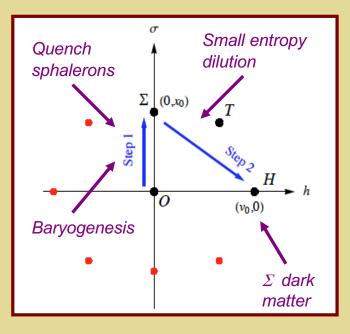


 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of ϕ_j , then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j

2-Step EWBG: Rich Array of Scenarios

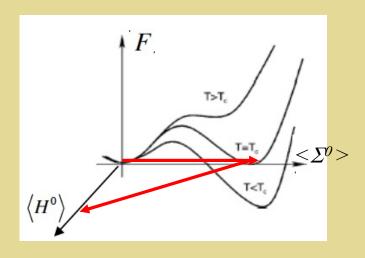


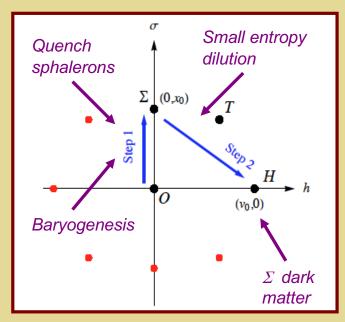


 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of ϕ_j , then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j

Illustrative Study





CPV asymmetry generated in SM sector via interactions with the ϕ_i

Considerations:

- Renormalizable interactions in scalar sector
- At least two new sector fields get spacetime varying vevs v_{NEW} (x) during step 1, at least one of which is EWSB
- At least two scalar fields mix due to v_{NEW} (x), at least one of which is in SM sector

103

T_{FW} -> Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \dots$$

$$T_0 \sim 140 \text{ GeV} \quad \equiv T_{EW}$$

$$\equiv T_{EW}$$

T_{FW} -> Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \dots$$

$$T_0 \sim 140 \text{ GeV} \quad \equiv \quad T_{EW}$$

$$\equiv T_{EW}$$

FO EWPT → Collider target:

$$M_{BSM} \lesssim 700 \text{ GeV}$$

 $\delta \kappa_H \gtrsim 0.01$

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- RG invariance at T>0

Non-perturbative (I.R.)

 Computationally and labor intensive

BSM proposals

EFT 1: Thermodynamics

Matching: Two Elements

Dimensional Reduction

All integrals are 3D with prefactor T → Rescale fields, couplings...

$$\int \frac{d^4k}{(2\pi)^4} \longrightarrow \frac{1}{\beta} \sum_n \int \frac{d^3k}{(2\pi)^3}$$

•
$$\varphi^2_{4d} = T \varphi^2_{3d}$$

•
$$T \lambda_{4d} = \lambda_{3d}$$

Thermal Loops

Equate Greens functions

$$\phi_{3d}^2 = \frac{1}{T} [1 + \hat{\Pi}'_{\phi}(0,0)] \phi^2$$

$$a_{2,3} = T \left[a_2 - a_2(\hat{\Pi}'_H(0) + \hat{\Pi}'_{\Sigma}(0)) + \hat{\Gamma}(0) \right]$$

Field

Quartic coupling