

Foundation Models for Collider Physics: Al as a Tool for Discovery

Yulei Zhang

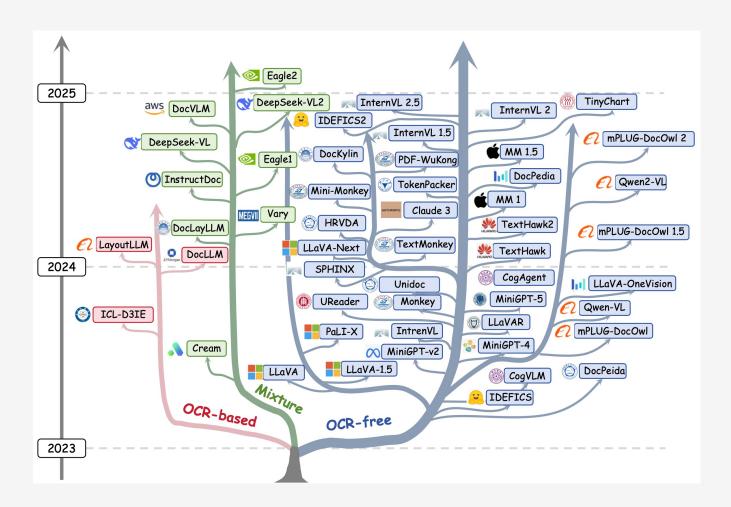
University of Washington, Seattle

Team: Ting-Hsiang Hsu, Qibin Liu, Yuan-Tang Chou, Wei-Po Wang, Yue Xu, Haoran Zhao, Bai-Hong Zhou, Shu Li, Benjamin Nachman, Shih-Chieh Hsu, Vinicius Massami Mikuni, Yulei Zhang

September 25th, 2025

2025 Postdoctoral Frontier Symposium in Physics and Astronomy

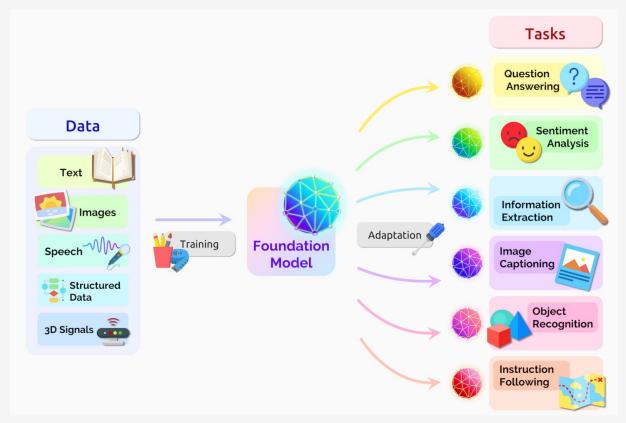
Large Language Model is changing the world...



- Transformers (self-attention, multi-head attention)
- Positional encoding
- Sparse / Mixture-of-Experts (MoE) layers
- Scaling laws (compute, data, parameters)
- Pretraining on large dataset
- Fine-tuning (task-specific adaptation)
- Chain-of-Thought (CoT) prompting
- •
- > Foundation Model

Foundation Model

A *foundation model* is a model trained on broad data at scale that can be adapted (fine-tuned) to a wide range of downstream tasks. It is *not* a fully complete model in itself, but a *foundation* — a starting point for building task-specific models.



NVIDIA blog: What are foundation models?

✓ Emergence:

New behaviors from scale

Homogenization:

One model, many tasks

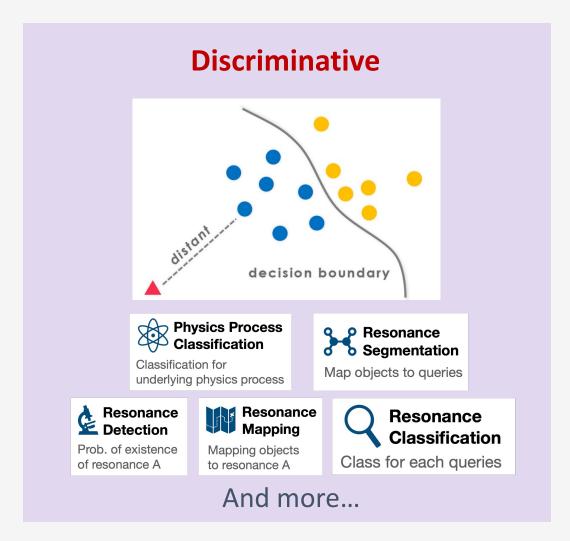
Transferable representations:

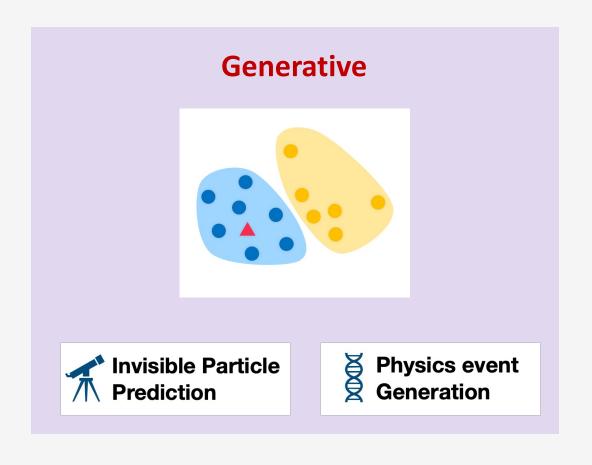
• Pretrain once, reuse anywhere

Multimodal potential:

Works across data types

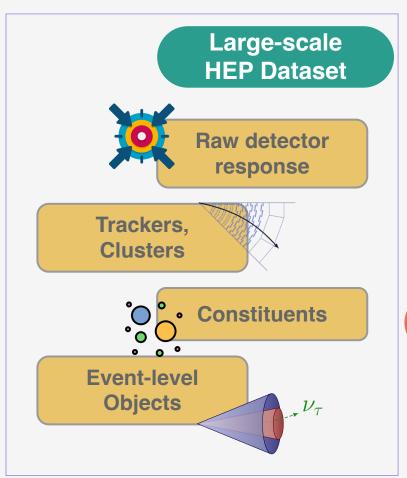
Understanding Today's ML Tasks in HEP

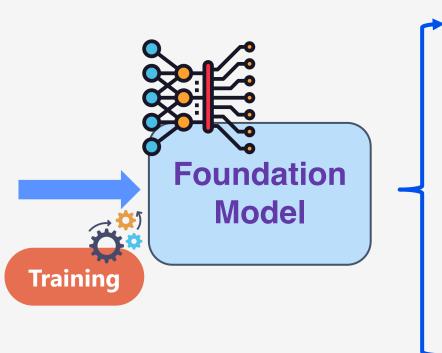


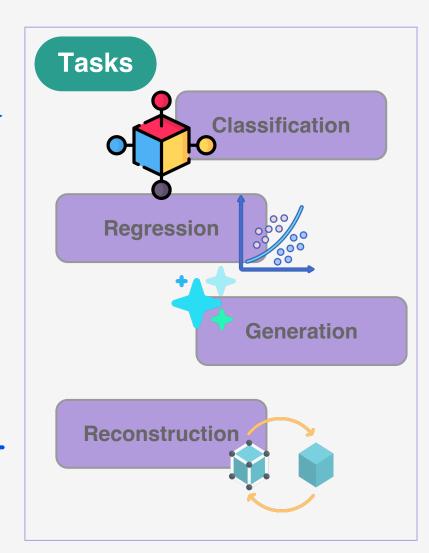


Can we unify these diverse tasks under one framework?

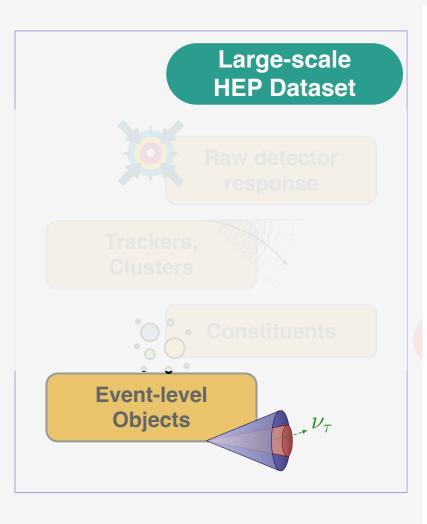
Can We build a Foundation Model for HEP?







Can We build a Foundation Model for HEP?



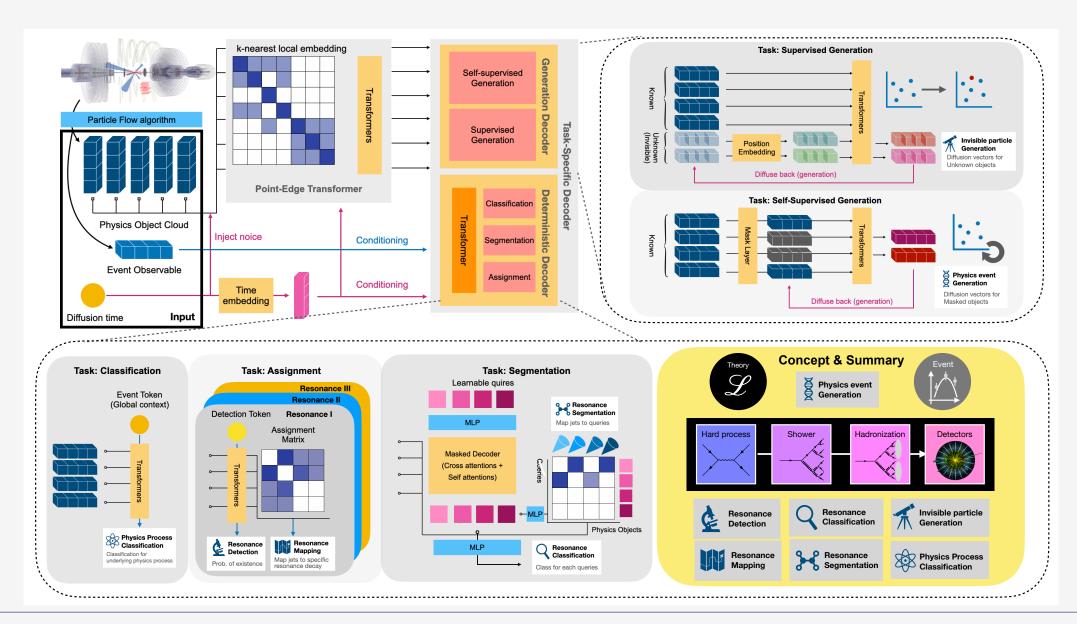
reconstructed & calibrated objects

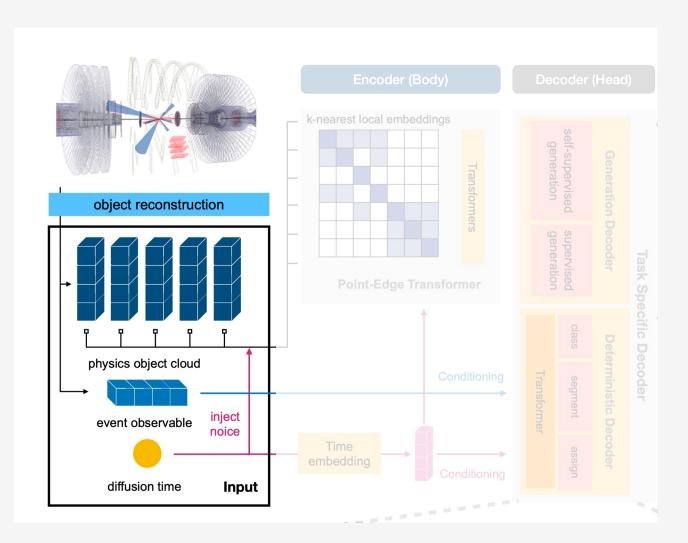
Pros:

- Already calibrated and validated by the experiment.
- Topology is clear and interpretable (jets, leptons, MET, etc.).
- Closest to final physics interpretation → straightforward connection to analysis.
- Lower computational cost (compact representation).
- Less dependent on detector design or experiment-specific effects → more portable across experiments and closer to physics truth.

Cons:

- Strongly dependent on reconstruction algorithms (jet clustering, tau ID, lepton calibration, etc.).
- Potential biases and information loss introduced during reconstruction.

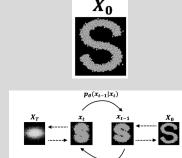


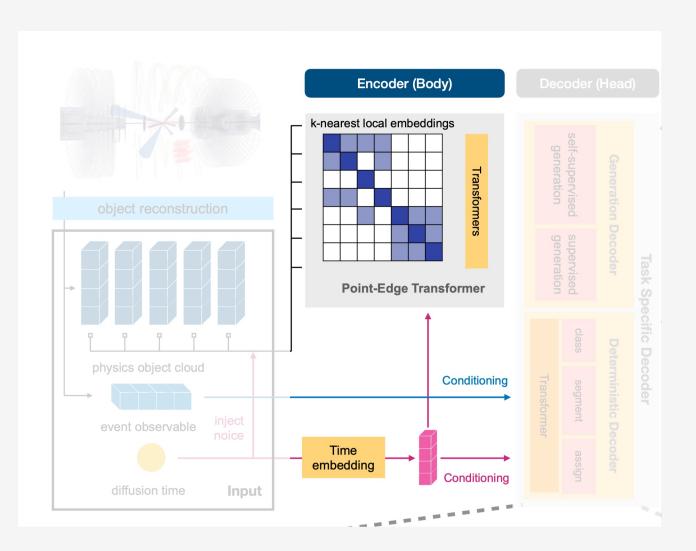


- 12 Input Representation
- Particle Cloud (Up to 18 Particles per Event):
 - Each particle is encoded with 7 features: 4-momentum, isbJet, isLepton, and charge.
- Global Features / Event Observables:
 - Missing transverse energy
 - Number of leptons, number of jets
 - Invariant mass of visible objects
 - Scalar sums like **HT, ST**, etc.

Un-perturbed PC for deterministic tasks...

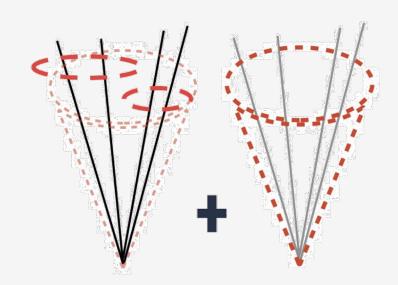
Perturbed PC for diffusion model and noise tolerance training

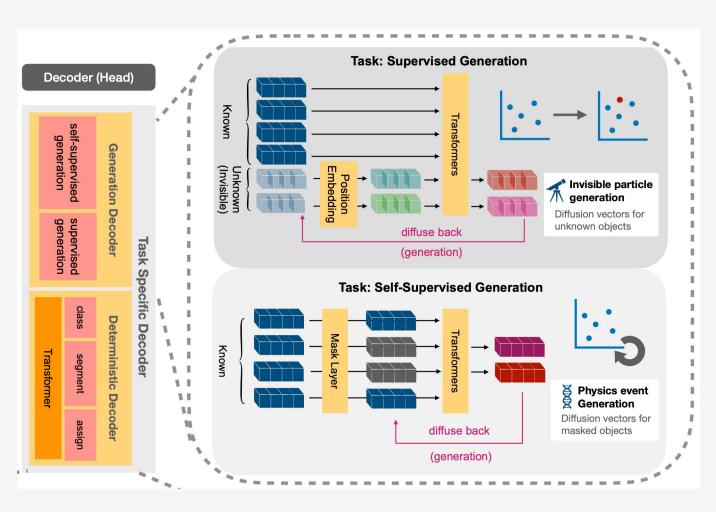




Core Idea: One strong body + many small heads

- Encoder Point-Edge Transformer:
- Inspired by OmniLearn [2404.16091]
- Models both particles and their relationships as a graph (points + edges)
- Captures inter-particle interactions and global event structure





Core Idea: One strong body + many small heads

Decoder – Generation Head:

Supervised Generation

- Use known objects as input to predict missing ones (e.g., neutrinos).
- Diffusion models capture high-dimensional probability densities → predict the most likely kinematics.

Self-supervised Generation

- Mask part/all of the inputs and reconstruct them with a diffusion model.
- Learns underlying event structure without requiring labels.

Core Idea: One strong body + many small heads

Decoder – Discriminative Heads:

Segmentation

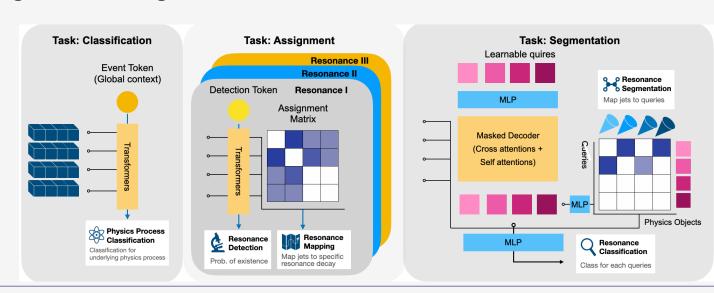
- Inspired by <u>Meta Al's segmentation networks</u>
 - The model performs set prediction (queries → predict class & mask), preserving permutation symmetry.
 - Naturally extendable from objects to substituents without changing the model design.

Classification

Multi-Class event classifiers (with regression)

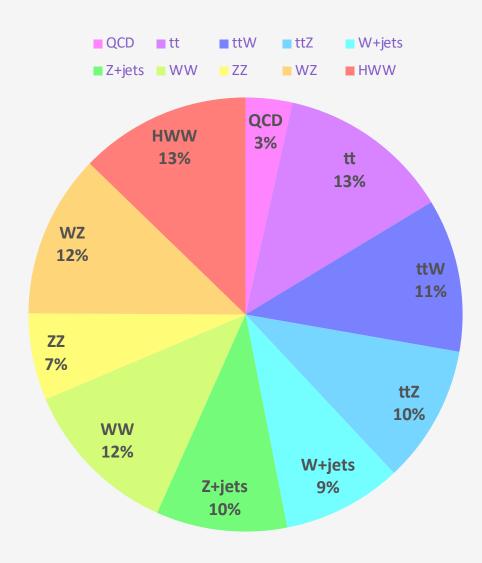
Assignment

- Symmetry-aware mapping of objects to truth partons (requires known decay topology).
- High accuracy for well-defined processes, but rigid, costly, not generalizable.



provides the first three the control of the control

EveNet Recipe: How we pre-train?



Dataset

- 10 SM processes, **3B raw** → **500M preprocessed events**.
- Diverse processes → learn classification & point cloud generation.
- Complex channels (ttV, VV, HWW) → drive segmentation & neutrino generation.

 Unsupervised Learning

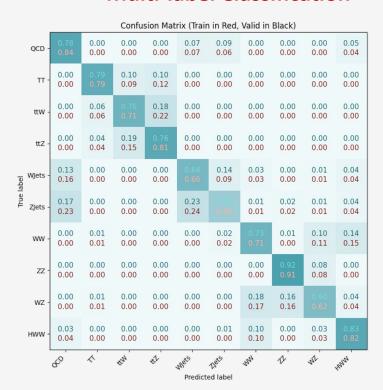
Training Strategy

- Stage 1 (<u>self-supervised</u>):
 - Only generation head active → learns unlabeled point cloud representation.
 - Gradual masking schedule: start with 10% masked → ramp to 100% (forces learning full event topology).
- Stage 2 (*full training*):
 - All heads active → multi-task optimization.
 - Assignment head is off due to high computational cost
- Stability: EMA + warm-up & cosine decay schedule.

EveNet Tasting: First results from pretraining

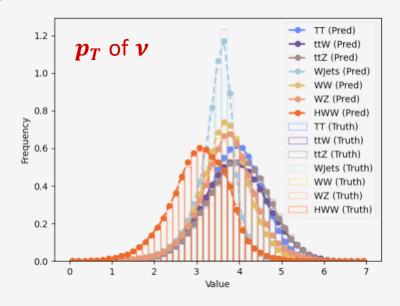
Segmentation

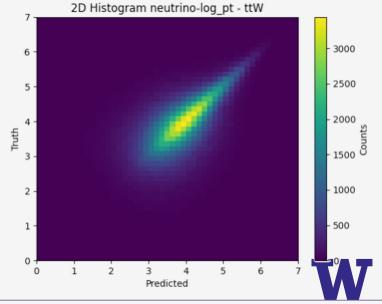
Multi-label Classification



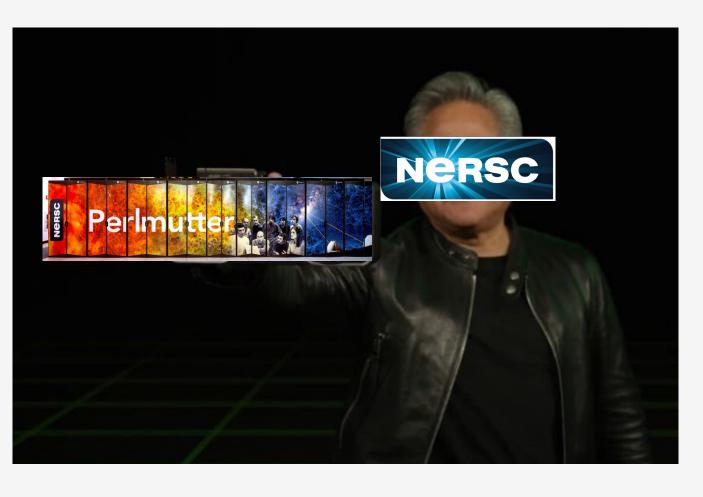
Detected Resonance

Supervised Generation





EveNet Wouldn't Train Itself—Thank You, Perlmutter!



- Scaling Up EveNet with Perlmutter
- # Training Setup:
 - 128 nodes
 - 512 GPUs
 - 16,384 CPU cores
- EveNet Model:

Encoder + Decoder

- Lite: 20M + 3M (today's result)
- Standard: 83M + 17M (in progress)

Downstream Applications of EveNet in Physics Analyses

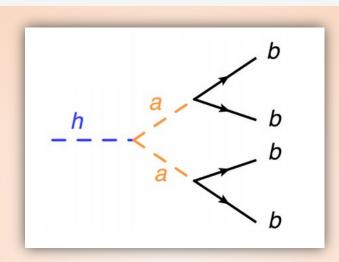
Quantum Entanglement

$$pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$$

Assignment & Generation

In-distribution

($t\bar{t}$ present in pretraining dataset)



Search for new physics

$$H \rightarrow aa \rightarrow bbbb$$

Assignment & Classification

Near out-of-distribution (new signal, bkgd. overlaps)

Anomaly Detection

$$\Upsilon \rightarrow \mu^+ \mu^-$$

Event Generation

Fully out-of-distribution (data-driven, different CME)

Easy - **familiar** physics and energy.

Hard - **unseen** physics and **shifted** energy regime.

Quantum Entanglement: Overview

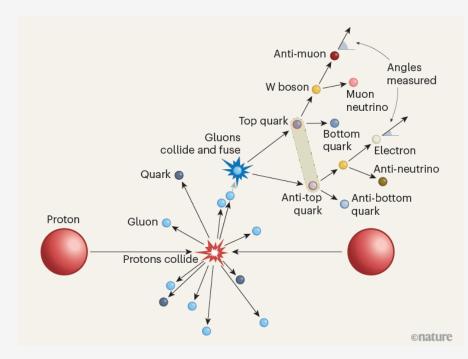
• © Quantum Entanglement ($pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$): A complex 2-lepton final state with multiple

neutrinos and combinatorial jet ambiguity

• Samples: $pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$ (threshold region)

- Methodology:
 - Network: EveNet-Lite
 - **Pretrain weights**: True vs. False
 - **Dataset size:** 3.6M for training, 2.4M for evaluation
- **Metrics**:
 - $t \rightarrow b\ell$ pairing efficiency
 - Uncertainty from unfolded spin correlation matrix and $D = -(C_{kk} + C_{rr} + C_{nn})$

The model is jointly trained on the **Assignment** and **Truth Generation** tasks.



Quantum Entanglement: Results

Assignment Efficiency

- [1] Matchable: Events where a ground-truth assignment exists; i.e., the event topology allows a well-defined mapping between reconstructed objects (e.g., jets) and true partons.
- [2] All Events: The full set of events, including both matchable and unmatchable ones.

	F.T. (CLS + Gen)		Scratch		Improvement [%]		F.T. (CLS + Seg + Gen)		F.T. (SSL)	
	Eff. [%] (M¹)	Eff. [%] (A ²)	Eff. (M)	Eff. (A)	M	А	Eff. (M)	Eff. (A)	Eff. (M)	Eff. (A)
1.0	82.17	71.2	80.48	69.71	2.10	2.14	81.95	71.02	80.83	70.05
0.7	82.29	71.32	78.85	68.28	4.36	4.45	81.69	70.78	80.37	69.66
0.3	81.91	70.98	77	66.64	6.38	6.51	81.51	70.6	79.15	68.51
0.1	81.74	70.82	45.64	39.38	79.10	79.84	81.48	70.56	49.53	42.72

Quantum Entanglement: Results

Unfolded Precision for spin correlation matrix and D

- Reference paper: <u>Eur. Phys. J. C (2022) 82:285</u>, assuming 139 fb⁻¹
- The observable $D=-C_{kk}-C_{rr}-C_{nn}$ is sensitive to QE, with D>1 indicating the QE.
- Relative precision with $\epsilon = \sigma_D/(D-1)$, Paper: $\epsilon_D \approx 5.26\%$

	F.T. (CLS + Gen)	Scratch	Improvement [%]	F.T. (CLS + Seg + Gen)	F.T. (SSL)
1.0	1.21	1.37	11.88	1.24	1.37
0.7	1.20	1.45	17.13	1.23	1.40
0.3	1.19	1.54	22.29	1.23	1.48
0.1	1.20	1.89	36.19	1.24	1.91

Search for New Physics: Overview

• Exotic Higgs Decay ($H \rightarrow aa \rightarrow bbbb$): A challenging 4-b final state sensitive to b-tagging inefficiency and jet misassignments

Samples:

• Signal: $H \rightarrow aa \rightarrow bbbb$ ($m_a = 30, 40, 60$ GeV)

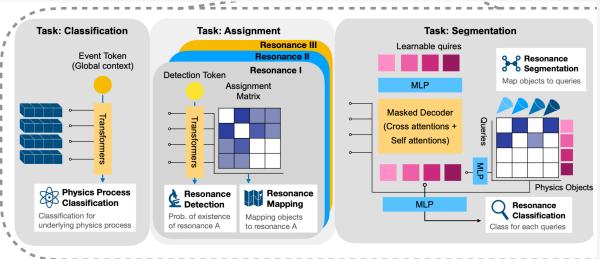
QCD: bbbb, bbbj, bbjj

Methodology:

- Network: EveNet-Lite vs. <u>SPANet</u> (same hidden dim)
- **Pretrain weights**: True vs. False
- Training Dataset size: 10k / 30k / 100k / 300k / 1M (signal portion: 10%)
- Assignment/Segmentation head (as Aux Task): True vs. False

The model is jointly trained on the **Assignment** and **Classification** tasks.

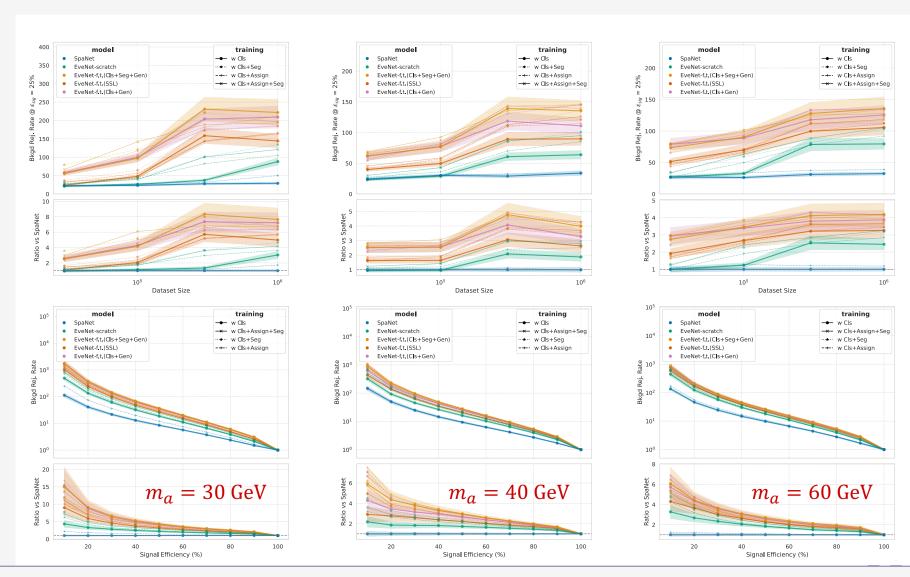
The signal samples used here were **not included** in pretraining



Search for New Physics: Results

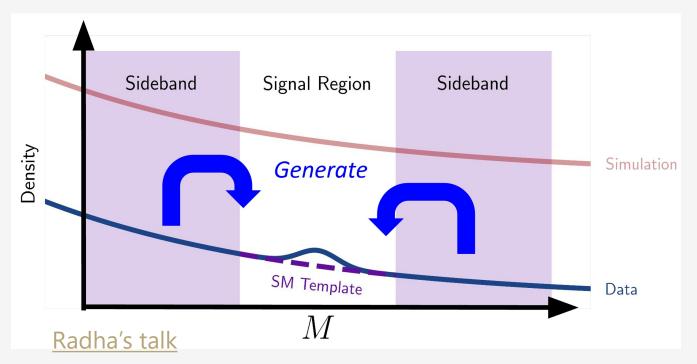
Classification

- 1. Inversed ROC
- 2. Bkgd. Rejection rate @ signal efficiency of 25%



Anomaly Detection: Overview

- **Reference paper**: <u>2502.14036</u> (To test EveNet's generative capability, we extend an existing anomaly detection method **using normalizing flows** by replacing it **with diffusion-based generation** of full 4-momentum)
- Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Υ resonances in di-muon final states.
- Goal: Perform model-independent bump hunting in the invariant mass spectrum using diffusion-based generative models to interpolate background.



Strategy Overview:

- 1. SR and SB definition $(m_{\mu\mu})$: SR = [9, 10.6] GeV, SB = [5, 9] & [10.6, 16] GeV
- 2. Background Modeling: ensemble of EveNet diffusion models
- Weak supervision: training XGBoost to separate generated events and data events

Anomaly Detection: Results

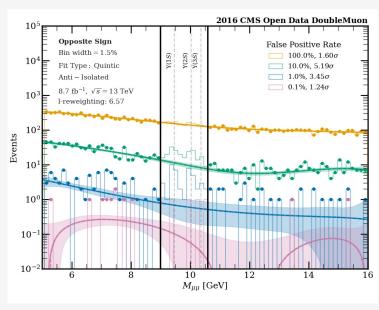
All results are performed 8 times with different random seeds to test the spread

Final Significance (*ℓ*-reweighting)

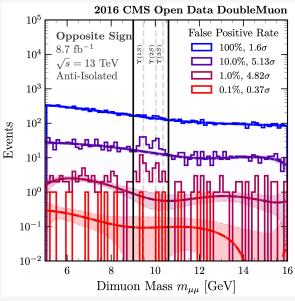
• paper: 6.4σ

• EveNet-Pretrain: $6.54 \pm 0.24\sigma$

• EveNet-Scratch: $7.04 \pm 0.37\sigma$ (mass sculpting \times)

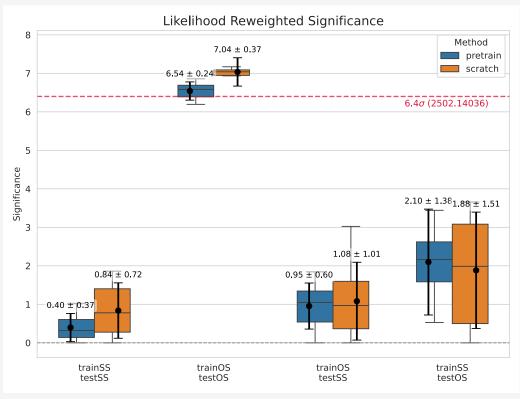


EveNet-Pretrain



Paper's result

Note: the energy regime here is even different from the main samples in pretrain



What We Learned?

Q: Can a foundation model in HEP really adapt to new tasks?

A: Yes! We added a new "Assignment" head (**not present during pretraining**) for QE and New Physics searches. With pretrained weights, the model immediately performed strongly → **extended to new heads and tasks** (<u>Homogenization</u>).

Q: How does it handle new physics or even new energies?

A: We tested progressively:

- QE $(t\bar{t})$: fully in-distribution, same CME.
- Exotic Higgs: out-of-distribution signal, but same CME.
- Anomaly Detection: fully data-driven, different CME.

In all cases, the model retained strong performance \rightarrow proof of <u>transferable</u> <u>representations</u> across processes and energy scales.

Q: Can it go multimodal?

A: Yes. The current heads (especially Segmentation) can naturally extend to multimodal inputs like **tracks + clusters** or **constituents + objects**, enabling clustering and resonance reconstruction. That's the *multimodal potential*.

? Emergence:

- New behaviors from scale
- **✓**Homogenization:
- One model, many tasks
- **✓** Transferable representations:
- Pretrain once, reuse anywhere
- Multimodal potential:
- Works across data types

What's Next?

Q: But what about "Emergence"?

A: In LLMs, "emergence" is a debated concept. In HEP, we need to rethink what emergence means, since our evaluation metrics are very different. Defining this is an open research question.

Q: Does bigger mean better?

A: Our current model has $\sim 20M$ parameters. We're scaling to **100M** ($\sim 16,000$ GPU hours on 500M events). We want to test whether larger capacity yields new physics insights.

Q: Could this change how we do HEP analyses?

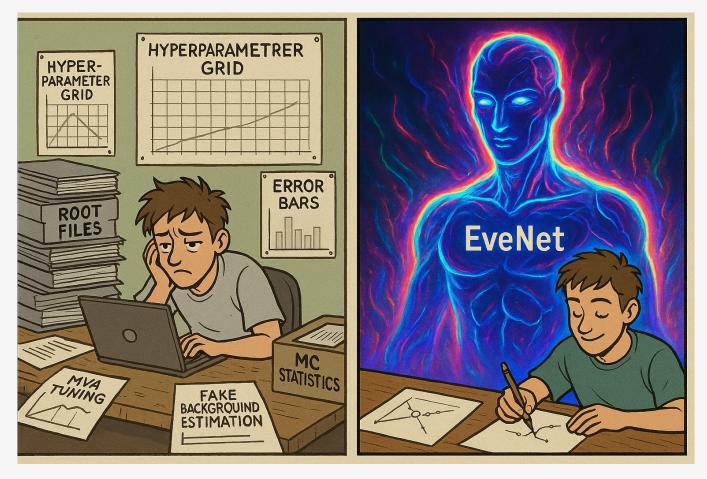
A: Yes. A strong general foundation model means less need for bespoke, highly-tuned models for every analysis. This could pave the way toward auto-analysis in HEP \rightarrow a step toward AGI-like helpers for particle physics.

Q: Any other ideas?

A: Plenty! For example, exploring **Mixture-of-Experts (MoE)** architectures to improve scalability and specialization. Foundation model is the pillar for **Reasoning Large Model** (RLM, *DeepSeek*).

EveNet: Powering the Next Physics Breakthrough

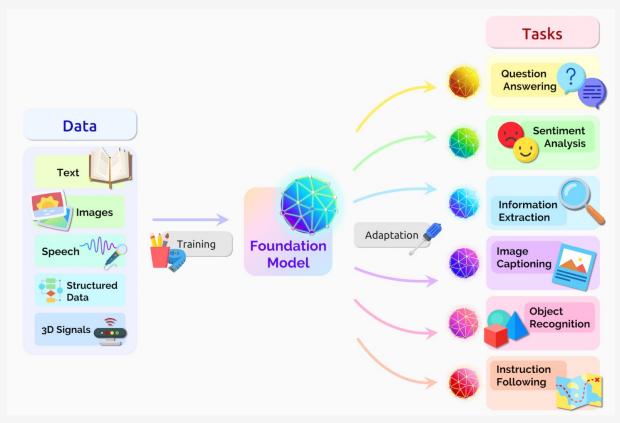
a foundation model to solve all HEP problems



Backup

Foundation Model

A *foundation model* is a model trained on broad data at scale that can be adapted (fine-tuned) to a wide range of downstream tasks. It is *not* a fully complete model in itself, but a *foundation* — a starting point for building task-specific models.

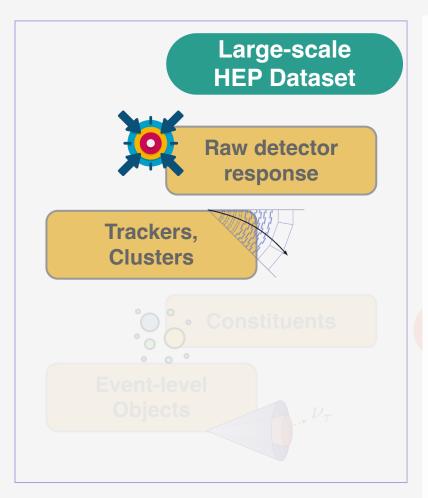


NVIDIA blog: What are foundation models?

✓ Emergence:

- New behaviors from scale
- **Homogenization:**
- One model, many tasks
- Transferable representations:
- Pretrain once, reuse anywhere
- **Multimodal potential:**
- Works across data types

Can We build a Foundation Model for HEP?



Primitive...

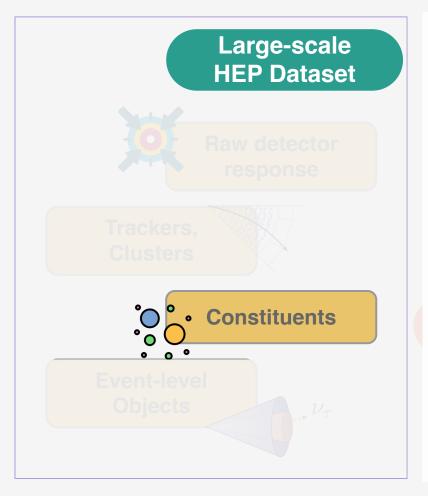
Pros:

- Most information-rich; closest to detector truth.
- Minimal bias from reconstruction choices.
- Potential for ML to learn end-to-end physics object reconstruction directly from detector signals.

Cons:

- Very high dimensionality → massive computational and storage requirements.
- Harder to interpret results in physics terms.
- Needs careful handling of detector effects, noise, and calibrations.
- Farther from final physics observables, so **less transparent** to analysts.

Can We build a Foundation Model for HEP?



Particle Flow objects, uncalibrated

Pros:

- Richer information than event-level; captures substructure of jets and taus.
- Less dependent on final reconstruction/ID algorithms.
- More **flexibility** for ML to discover new features (e.g., jet substructure, pile-up mitigation).

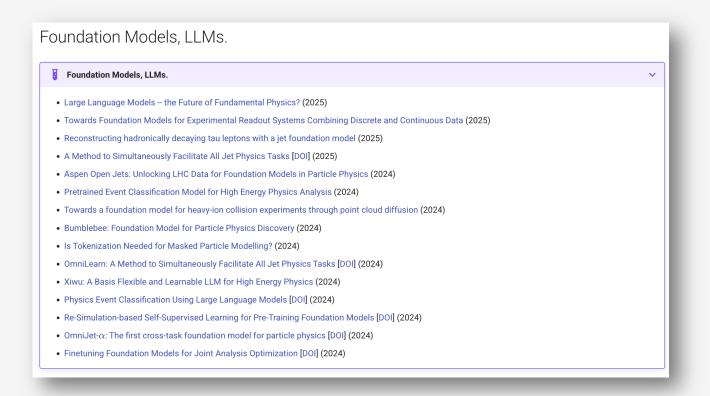
Cons:

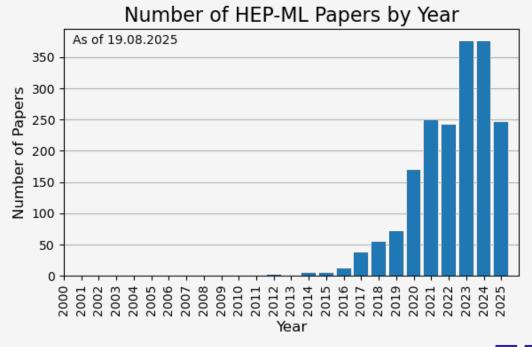
- Still subject to PF reconstruction algorithms (track-cluster linking).
- Higher dimensionality → increased computational cost.
- Not yet fully calibrated → may need additional corrections before use in physics interpretation.

Machine Learning + HEP

A Living Review of Machine Learning for Particle Physics

- There is a growing interest in applying machine learning techniques to HEP.
- The concept of foundation models has also been explored in recent studies.





Can We build an Event-Level Foundation Model?

Could we resolve all event-level tasks with a single model?

Pre-trained Model

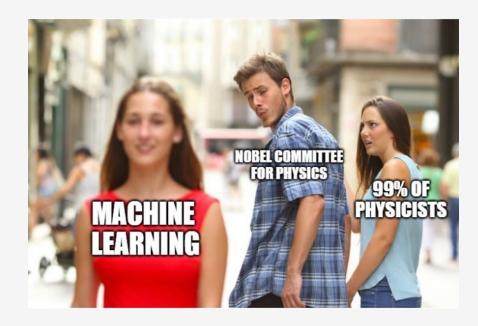
- Extensively pre-trained for general-purpose representations.
- **Lightly fine-tuned** for task-specific applications.
- Especially **effective** in scenarios with **limited** training data.

Foundation Model

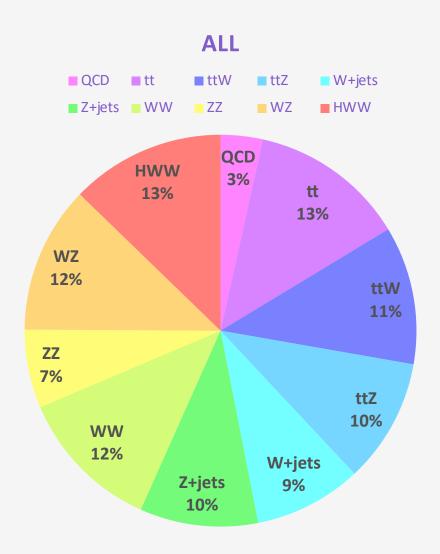
- Enables a unified understanding of HEP events.
- Designated to generalize across a wide range of tasks.

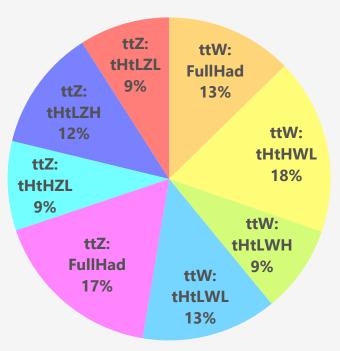
Core Ingredients of an Event-Level Foundation Model in HEP

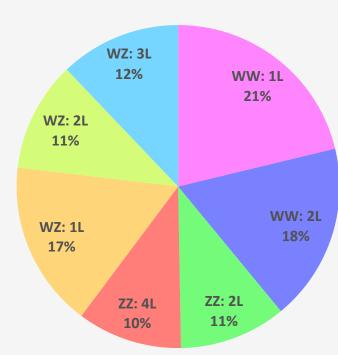
- Generalist Embedding: Shared event-level representation
- Multi-task Learning: One model, many objectives
- Self-Supervised Pretraining: Learns from data structure
- Scalability: Improves with more data + compute
- Transferability: Fine-tune for new tasks easily



How do we pre-train EveNet







- All processes help learn diverse point cloud patterns for classification and point cloud generation.
- ttV, VV, and HWW focus on harder tasks like assignment and neutrino generation due to their complex final states.

Search for New Physics: Observations

- III EveNet shows strong scalability:
 - Performs well even on small training datasets.
 - Continues to improve with increasing data volume.
 - Pretrained model performs well even without assignment head, unlike SPANet or scratch models.
- Compared to SPANet:
 - EveNet offers better **scalability** and **robust generalization** out of the box.
 - SPANet may require **additional tuning** to match performance at larger scales.
 - Performance improves 2–4× with the pretrained EveNet.

Quantum Entanglement: Results

Unfolded Uncertainty for spin correlation matrix and D

- Reference paper: Eur. Phys. J. C (2022) 82:285, assuming $139 \; \mathrm{fb^{-1}}$
- The observable $D=-C_{kk}-C_{rr}-C_{nn}$ is sensitive to QE, with D>1 indicating the QE.
- Relative precision with $\epsilon = \sigma_D/(D-1)$, Paper: $\epsilon_D \approx 5.26\%$

	Recon ν + Recon pairing				Recon ν + Truth pairing			Truth ν + Recon pairing		
	Fine- tuned	Scratch	imp. [%]	Fine- tuned	Scratch	imp. [%]	Fine- tuned	Scratch	imp. [%]	
1.0	1.24	1.37	9.78	1.25	1.38	9.41	0.69	0.69	0.06	
0.7	1.23	1.45	15.21	1.24	1.48	15.98	0.69	0.70	0.99	
0.3	1.23	1.54	20.06	1.24	1.55	19.70	0.69	0.70	2.59	
0.1	1.24	1.89	34.45	1.25	1.70	26.62	0.69	0.80	14.61	

Quantum Entanglement: Observations

- Pretrained model shows improved assignment performance, increasing matching efficiency by:
 - +2.5% for matchable events
 - +2.1% for all events
- \(\simega\) Uncertainty reduction:
 - Absolute improvement of $\sim 12.5\%$ in precision over the scratch model
 - Relative precision improvement of $\sim 35\%$ over the pheno paper result
- Rapid and stable convergence:
 - Pretrained model converges faster for both assignment and generation heads
 - Reduces risk of **overfitting** in the assignment task

EveNet Playbook: A guide to downstream applications

Option 1: Plug-and-Play

(Pretrained Encoder + Heads)

- Keep input/output format as in pretraining.
- Load pretrained weights for encoder (except normalizers).
- Optionally load head weights as initialization.
- Turn on task heads you need (can combine multiple).

Option 2: Customized Player

(Pretrained Encoder + Your Own Decoder)

- Input features of point cloud should match pretrained ones.
- Global features can be customized.
- Encoder outputs embedded event representation.
- You design your own decoder/heads for specific tasks.
- Only load pretrained encoder weights.

Anomaly Detection: Overview

- **Reference paper**: <u>2502.14036</u> (To test EveNet's generative capability, we extend an existing anomaly detection method **using normalizing flows** by replacing it **with diffusion-based generation** of full 4-momentum)
- Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Υ resonances in di-muon final states.
- Goal: Perform model-independent bump hunting in the invariant mass spectrum using diffusion-based generative models to interpolate background.
- Strategy Overview:
 - 1. Signal region (SR) and Sideband (SB) definition $(m_{\mu\mu})$: SR = [9, 10.6] GeV, SB = [5, 9] & [10.6, 16] GeV
 - 2. Background Modeling Replace NF (CATHODE in paper) with an ensemble of EveNet diffusion models
 - Global Generation: Conditioned on mass, generate H_T and $\Delta R_{\mu\mu}$
 - PC generation: Conditioned on mass, H_T and $\Delta R_{\mu\mu}$, generate muons with features: 4-momentum and ip3d
 - Quality selection: Recalculate every global information from the point cloud directly and re-apply analysis cut i.e., windows cut on the generated events.
 - **3. Weak supervision**: training XGBoost to separate generated events and data events
 - 4. Significance extraction: cut-and-count and likelihood-reweighting

Anomaly Detection: Observations

Final Significance:

- Both **pretrained** and **scratch** models achieve **comparable or better results** than the original CATHODE benchmark.
- Scratch model slightly outperforms the paper baseline.
- Pretrained model performs slightly below, but with <u>smaller variance across 8 random seeds</u>.
- No mass sculpting observed in same-sign control region.

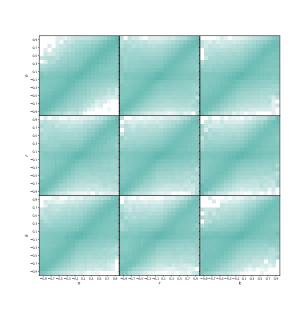
Generation Efficiency:

• Pretrained model converges faster and achieves 2.5× higher quality selection efficiency than the scratch model.

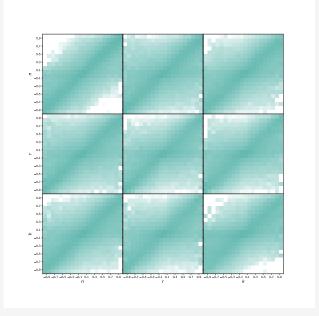
Analysis-Specific Limitation:

- Slight underperformance of the pretrained model is likely due to the use of **ip3D**, a feature not present in pretraining.
- With a lower learning rate on body during fine-tuning, pretrained models adapt more slowly to unseen features like ip3D.
- For 4-momentum-related distributions, the pretrained model consistently produces higher-quality samples than scratch.

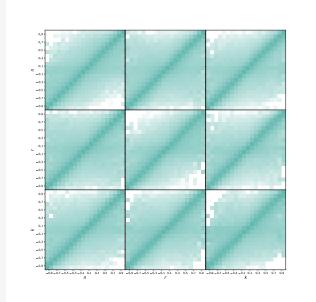
QE response matrix (Fine-tuned)



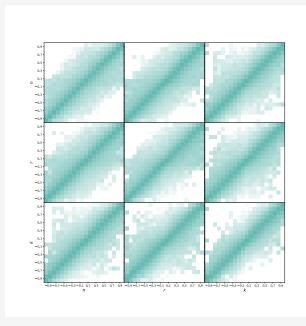
Recon- ν + Recon Pairing



Recon- ν + Truth Pairing

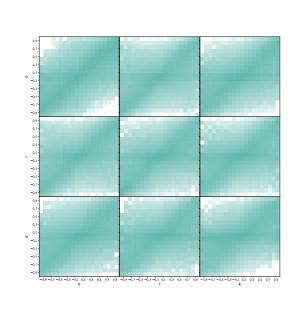


Truth- ν + Recon Pairing

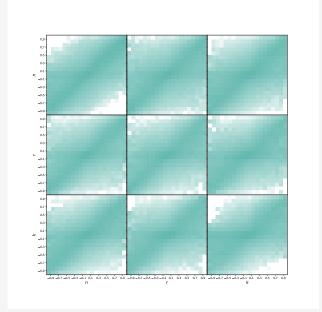


Truth- ν + Truth Pairing

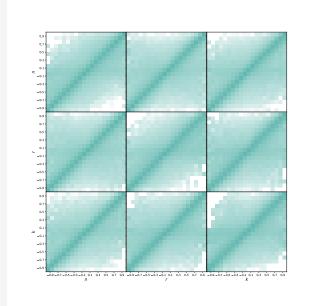
QE response matrix (Scratch)



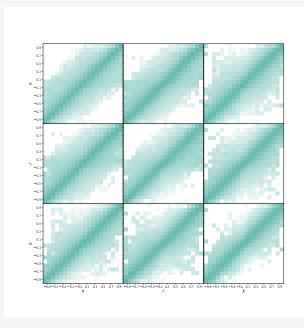
Recon- ν + Recon Pairing



Recon- ν + Truth Pairing



Truth- ν + Recon Pairing



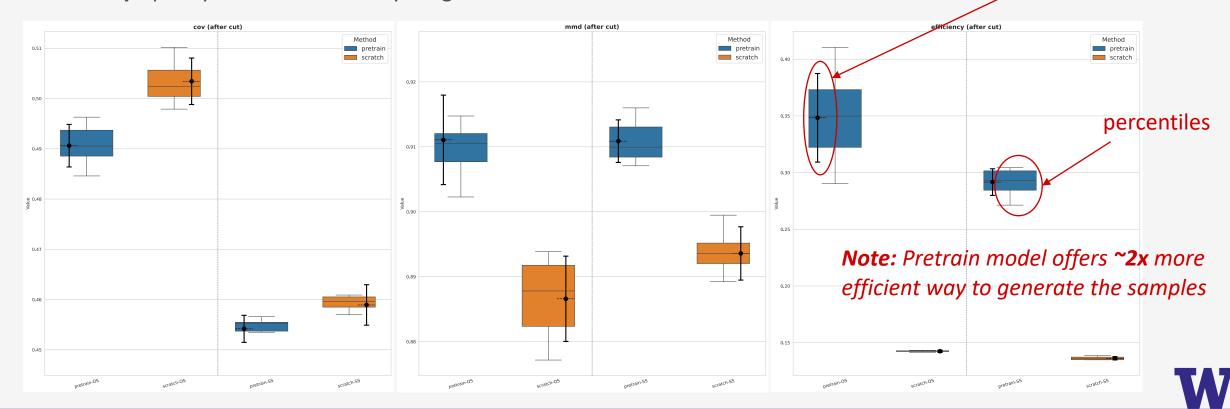
Truth- ν + Truth Pairing

Anomaly Detection: Results

All results are performed 8 times with different random seeds to test the spread

Generation Quality (arXiv: 2106.11535)

- Coverage: measuring the diversity of the samples in Y relative to X
- MMD: the average distance between matched samples, measuring the quality of samples
- Efficiency: quality selection efficiency for generated events



 $\mu \pm \sigma$

Summary

Pre-trained Model

Foundation Model

Our current study shows that pretraining enables transferable and multi-task representations across diverse HEP tasks.

 Pretrained EveNet demonstrates strong scalability, fast convergence, and robust generalization across diverse HEP tasks, without the need for hyperparameter tuning or task-specific design.

Search for new Physics

$$H \rightarrow aa \rightarrow bbbb$$

Assignment & Classification

Up to **2–4× gain** on bkgd. Rej. Rate @ $\epsilon_{sig} = 25\%$, strong performance even without assignment/segmentation head.

Quantum Entanglement

$$pp \to t\bar{t} \to b\bar{b}\ell\nu\ell\nu$$

Assignment & Generation

+2% assignment, **10%** uncertainty reduction, ~75% **better** than prior work

Anomaly Detection

$$\Upsilon \rightarrow \mu^+ \mu^-$$

Event Generation

Matches or exceeds baseline; **2.5**× more efficient generation and better 4-momentum modeling.

Summary

Foundation Model

- To explore **emergent capabilities**, we are training a **100M-parameter model** trained on up to **1.5B effective events**, aiming to push EveNet into the true foundation model regime.
- Multimodal Potential Ahead: Future extensions include integrating jet constituents, tracker hits, and heterogeneous data forms to explore multimodal learning in HEP.
- Dataset Sharing: We have 3B raw events in Parquet format and are happy to share them for benchmarking or related studies.
- Paper Coming Soon: We are finalizing the draft, and the arXiv link will be shared shortly!