Atmospheric Neutrino Flux Calculation at Low Energies

Jie Cheng, YuFeng Li, Liangjian Wen Institute of High Energy Physics, Beijing M. Honda University of Tokyo, Tokyo

CosNuMM2019@Shanghai, 2019.11.28

Atmospheric neutrino

Atm-v sources :

interactions of cosmic rays with nuclei in Earth's atmosphere, in the presence of geomagnetic field effect

Atm-v calculation:

- $\Phi_{\nu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\nu} \text{ (neutrino)}$
- ✓ $Φ_{primary}$: Primary cosmic ray flux
- ✓ $R_{cut} = R_{cut}(R_{cr}, latitude, longitude, \theta, \varphi)$: depend on geomagnetic field and rigidity of cosmic ray particle $(R_{cr} \equiv \frac{P}{Z_e})$
- ✓ $Y_{\nu} = Yield_{\nu}(h, \theta)$: Hadronic Interaction Model, Air Profile, and meson-muon decay

A full 3D calculation

Atmospheric neutrino flux (>100MeV)

- Dashed line : flux provided by Honda (<u>http://www.icrr.utokyo.ac.jp/~mhonda/nflx2014/index.html</u>)
- Solid line : our calculation
- The differences are due to less statistics for high energy range in our calculation

Needs at large LS detectors

→ Right Plot: relative uncertainty of atmospheric neutrino calculation as a function of neutrino energy

□ The atmospheric neutrino flux calculation for medium energy (~500MeV

- hundreds GeV) → more precise (<10%)
- □ Low energy (<500 MeV) → uncertain

JUNO needs more precise atmospheric neutrino flux calculation for the low energies for above physics goals

Propagation of muon inside the earth

- Should be included in the flux calculation
- Contribute neutrinos (E_{ν} < 100 MeV)
- Based on Physics Reports 354 (2001)

Propagation of muon inside the earth

- Should be included in the flux calculation
- Contribute neutrinos (E_{ν} < 100 MeV)
- Based on Physics Reports 354 (2001)

- This presentation will focus on it
- First report on flux with E_{ν} < 100 MeV

Propagation of muon inside the earth

- Should be included in the flux calculation
- Contribute neutrinos (E_{ν} < 100 MeV)
- Based on Physics Reports 354 (2001)

- This presentation will focus on it
- First report on flux with E_{ν} < 100 MeV

• Others :

- ✓ Local mountain profile (density)
- ✓ Local atmospheric pressure (measured)
- ✓ Local temperature (measured)
- ✓ Local geomagnetic field (measured)

Propagation of muon inside the earth

- Should be included in the flux calculation
- Contribute neutrinos (E_{ν} < 100 MeV)
- Based on Physics Reports 354 (2001)

- This presentation will focus on it
- First report on flux with E_{ν} < 100 MeV

Others :

- ✓ Local mountain profile (density)
- ✓ Local atmospheric pressure (measured)
- ✓ Local temperature (measured)
- ✓ Local geomagnetic field (measured)

Will be applied in the calculation soon

Propagation of muon inside the earth

- Should be included in the flux calculation
- Contribute neutrinos (E_{ν} < 100 MeV)
- Based on Physics Reports 354 (2001)

- This presentation will focus on it
- First report on flux with E_{ν} < 100 MeV

Others :

- ✓ Local mountain profile (density)
- ✓ Local atmospheric pressure (measured)
- ✓ Local temperature (measured)
- ✓ Local geomagnetic field (measured)

 Will be applied in the calculation soon

 More muon flux measurements to calibrate the hadronic models to improve the precision

Muon propagation inside earth

Capture probability

Consider most elements in the Rock for μ^- capture

PHYSICAL REVIEW D 99, 073007 (2019)

Capture probability

Consider most elements in the Rock for μ^- capture

PHYSICAL REVIEW D 99, 073007 (2019)

Neutrino flux at low energies

■ In [13, 53]MeV , increasing:

	ν_{μ}	$\overline{\nu}_{\mu}$	ν_e	V	v _e
Sea level	2.3%	4.1%	7.2%	3.6%	
700m underground	1.8%	3.6%	7.2%	3.4% 10	D

Neutrino flux (zenith angles)

- Ratio = (f1-f0)/f0
- f1→ integral flux within [13, 53]MeV w/ muon processes inside the earth
- f0→ integral flux within [13, 53]MeV w/o muon processes inside the earth

More effect the horizontal directions

Neutrino flux (horizontal direction)

- Ratio : same as that in the last slice
- Neutrinos induced in the air → east-west differences due to the geomagnetic field effect
- Neutrino induced inside the earth → little east-west differences due to muon track inside earth is much shorter

Neutrinos induced by muon inside earth

Summary

Cooperating with Honda-san, we start to calculate precise atmospheric neutrino flux

Due to the physical needs in large liquid scintillator detectors (e.g. JUNO), focus on flux calculation at low energies

- Muon propagation inside earth are applied in the calculation
- Most effect horizontal direction
 - $\checkmark v_e$: Contribute 40% (maximum) for JUNO sea level
 - $\checkmark v_e$: Contribute 16% (maximum) for JUNO 700m underground
- Average all directions :

 \checkmark In [13, 53]MeV range, increase 2% ν_{μ} , 4% $\bar{\nu}_{\mu}$, 7% ν_{e} , and 3% $\bar{\nu}_{e}$

The improvement of flux calculation at low energies : ongoing

Thanks

Backup

Primary cosmic ray flux : $\Phi = \Phi_{primary} \otimes R_{cut} \otimes Y$

Latest cosmic ray model:

- Use B-spline function
- based on AMS02, BESS and so on

Correct the effect by geomagnetic field in low energy range

• Use Liouville's theorem to ensure the conservation of particles in phase space

Geomagnetic effects : $\Phi = \Phi_{primary} \otimes R_{cut} \otimes Y$

• Geomagnetic field:

- Outside the atmosphere : as a filter → allow higher energy and exclude lower energy (Rigidity cutoff)
- Inside the atmosphere : bend charged secondaries
- The effect depends on position, direction, and rigidity (radius of curvature)
- Back tracking technique : calculate cutoff rigidity
 - Minimum momentum with which anti-particle escapes from the geomagnetic field

- (a)particle passes the cutoff test
- (b)particle not pass the cutoff test, discarded

Geomagnetic effects

Geomagnetic field model : International Geomagnetic Reference Field (IGRF) IGRF10 Geomagnetic Horizontal Field Strength

Hadronic interaction : $\Phi = \Phi_{primary} \otimes R_{cut} \otimes Y$

- Models of hadron production : based on accelerator data
- For Honda 2011:
 - < 32GeV : JAM model
 - > 32GeV : modified DPMJET-III
- Muon observations to calibrate the hadronic models

Air density : $\Phi = \Phi_{primary} \otimes R_{cut} \otimes Y$

 NRLMSISE-00 instead of US-standard 1976 to obtain position and seasonal variations
 Honda @ PANE 2018

Towards a full 3D calculation

Atmospheric neutrino

Atm-v sources :

interactions of cosmic rays with nuclei in Earth's atmosphere, in the presence of geomagnetic field effect

Atm-v calculation:

 Based on the calculation scheme by Honda-san
 Phys. Rev. D 92, 023004 (2015)

✓ Primary cosmic ray spectra
✓ Geomagnetic field effect
✓ Hadronic interaction model
✓ Meson and muon decay
✓ Air density

We are calculating precise atm. neutrino flux in the low energy range, cooperating with Honda-san

The check of muon propagation in simulation

Time calculation for muon capture

TABLE I. The μ^- atomic capture percentages and decay probabilities D_{μ^-} in a muonic atom for 10 dominant elements of the upper continental crust [20]. The corresponding mass and number percentages, average atomic capture probability P(Z), μ^- mean life τ_{μ^-} , and Huff factor Q have also been listed.

Elements	Mass (%)	Number (%)	P(Z)	Atomic capture (%)	τ_{μ^-} (ns)	Huff factor	$D_{\mu^{-}}$ (%)
0	47.51	62.13	1.00	60.26	1795.4	0.998	81.56
Si	31.13	23.89	0.84	19.46	756	0.992	34.14
Al	8.15	3.91	0.76	2.88	. 864	0.993	39.05
Fe	3.92	2.27	3.28	7.21	206	0.975	9.14
Ca	2.57	2.07	1.90	3.81	332.7	0.985	14.92
Na	2.43	2.27	1.00	2.21	1204	0.996	54.58
Κ	2.32	1.28	1.54	1.91	435	0.987	19.54
Mg	1.50	1.99	0.93	1.79	1067.2	0.995	48.33
Ti	0.38	0.17	2.66	0.45	329.3	0.981	14.70
Р	0.07	0.02	1.04	0.02	611.2	0.991	27.57

Energy calculation for muon capture

- We don't find any theoretical or experimental energy spectrum of v_{μ} in muon captured process.
- But energy spectrum of v_{μ} is fairly similar to the gamma spectrum in the reaction of the pi- capture on nucleus
 - Phys. Rev. C20, 248(1979)
- The maximal neutrino energy only reaches 95 MeV due to the muon mass is 34 MeV less than of a pion

For decay, the energies are default in Honda's codes