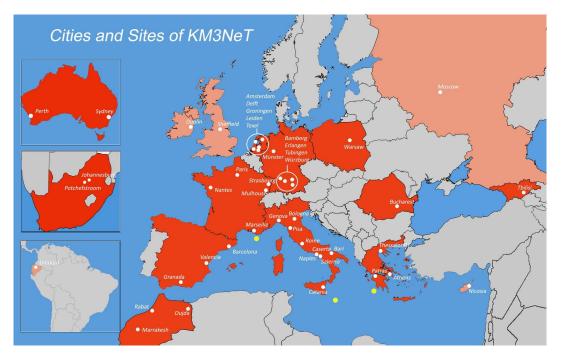
KM3NeT Online Framework for Neutrino Alerts

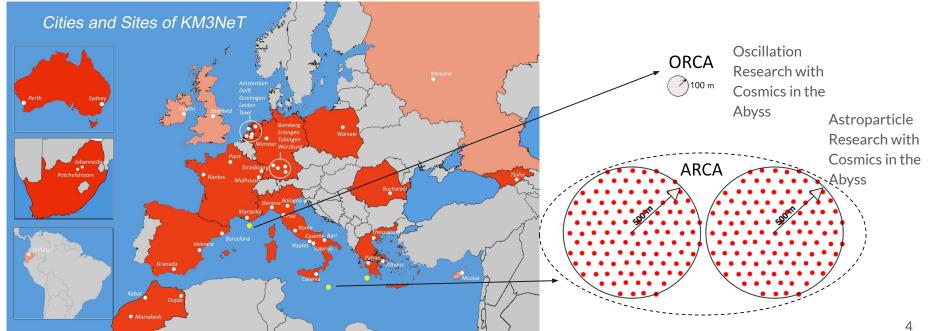
Feifei Huang (IPHC, CNRS) on behalf of the KM3NeT collaboration CosNuMM 2019, Shanghai, China November 28 2019

This project HAS RECEIVED funding from the *European Union's research and innovation Horizon H2020* under grant agreement *program* No. 739560 1

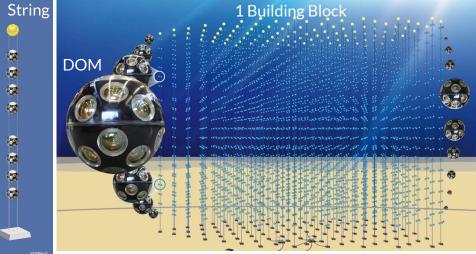


Outline

- Introduction to KM3NeT
- Neutrino Signatures
- Data Flow in KM3NeT
- Online Analysis Framework
 - Event Reconstruction
 - Event Classifier
 - Online Alert Sending and Reporting
- Summary & Outlook

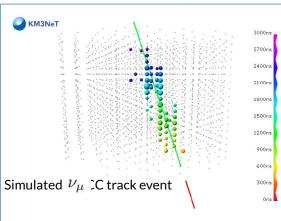


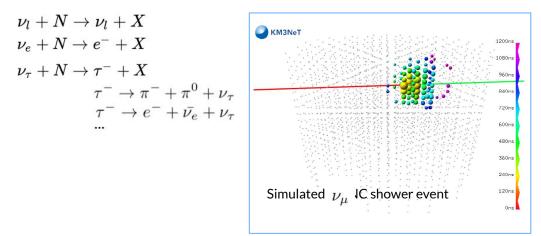
The KM3NeT Collaboration


The KM3NeT Collaboration

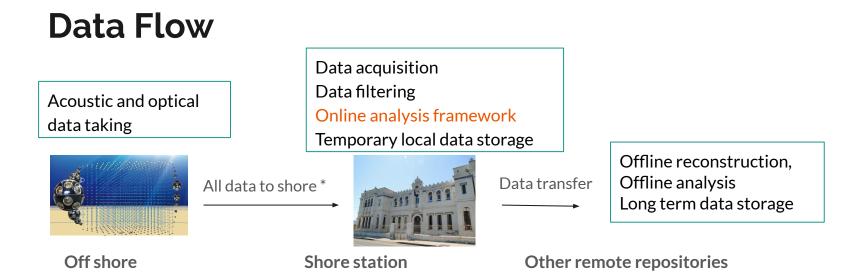
The KM3NeT Detector

1 Building Block = 115 Strings 1 String = 18 DOMs (Digital Optical Modules) 1 DOM: 31 3-inch PMTs

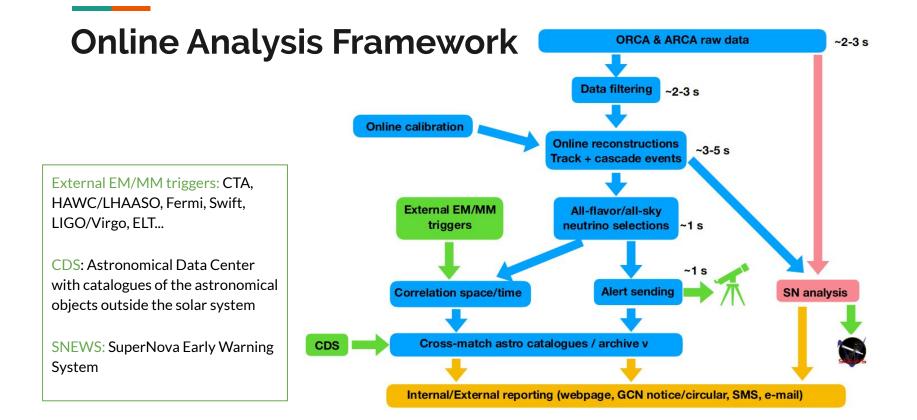

- **ORCA**: low energy part
 - Full: 1 Building Block (115 strings) (LOI)
 - Phase-1: 6 strings .
 - Spacing: 23 m (horizontal), 9 m (vertical) Ο
 - Atmospheric neutrinos, 1 GeV ~ 1 TeV 0
 - Goals: neutrino mass hierarchy, oscillation 0 parameters, tau neutrino appearance, supernova MeV neutrino, low energy astronomy, ...
- **ARCA**: high energy part, 2 building blocks
 - Full: 2 Building Blocks 0
 - Phase-1: 24 strings
 - Spacing: 90 m (horizontal), 36 m (vertical) 0
 - Astrophysical neutrinos, 1 TeV ~ 1 PeV 0
 - Goals: Point-like neutrino sources, diffuse flux... 0
- Currently deployed: 4 ORCA strings, 1 ARCA string

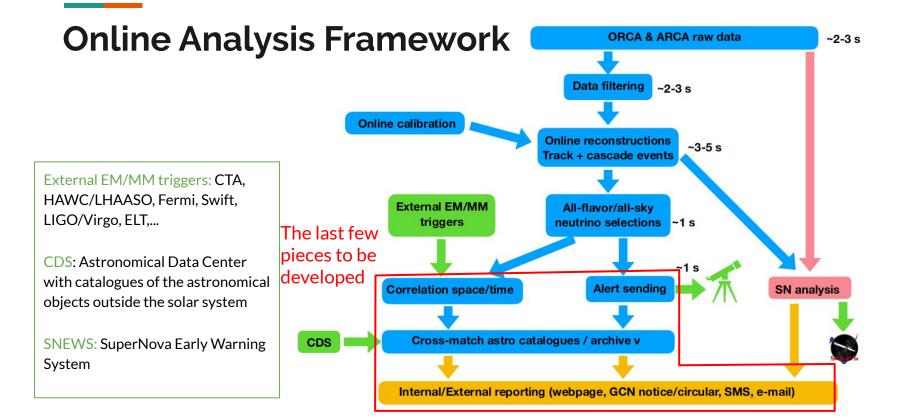

Neutrino Signatures

Track-like: events with visible muon track.


 $egin{aligned} &
u_{\mu} + N
ightarrow \mu^- + X & (ext{N: nucleon} \ &
u_{ au} + N
ightarrow au^- + X & X: ext{hadrons }) \ &
au^-
ightarrow \mu^- + ar{
u_{\mu}} +
u_{ au} \end{aligned}$

Shower-like: events with no visible muon track.

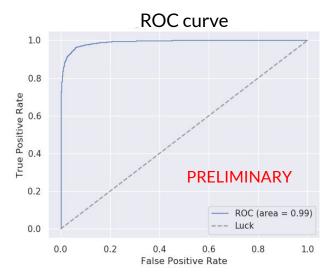



* All analog PMT pulses passing a preset threshold are time-stamped and sent to the shore station.

7

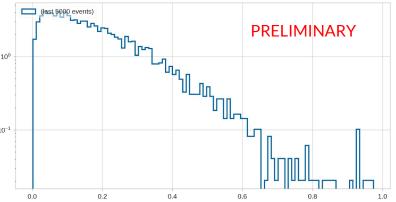
Online Event Reconstruction

- Goal: To do energy and direction reconstruction of the incoming neutrinos
- Reconstruction process and time:
 - First guess track fit (potentially as a pre-selection criterion in the future) << 1s
 - Standard track direction reconstruction (used also in offline): ~ 1s
 - Shower reconstruction: 2 ~ 4 s /event (possible optimization)


• Angular resolutions:

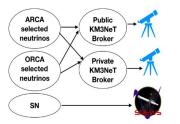
<u>Tracks</u>: ARCA: < 0.1° (>10 TeV) ORCA: 1 - 2° (100 GeV - 1 TeV) <u>Cascades</u>: ARCA: <1.5° (>10 TeV) ORCA: ~4 - 5° (100 GeV - 1 TeV)

Online Event Classification


- Goal: Differentiate potential neutrinos from background
- Method: Use machine learning on MC
 - Obtain MC simulation tagged with signal and background.
 - Split MC into: training, validating and testing sets
 - Testing set: untouched until final evaluation
 - Develop training features, e.g. reconstructed track direction, charge-related parameters
 - Train and compare different classifiers find the best one, e.g. compare ROC curve to evaluate classifier performance:
 - True positive rate: signal efficiency (i.e. ratio of correctly categorized signal to total true signal)
 - False positive rate: background efficiency (i.e. ratio of wrongly categorized background to total true background)
 - ROC curve the closer to the upper left (1, 0), the better. i.e value under the ROC curve closer to 1, the better

Online Event Classification

- Can tune the classifier's hyperparameters
- For evaluation, apply the final trained model on the testing set, apply proper weighting, plot signal and background rate vs. classification score
 - -> Choose a classification score as selection criteria, depending on desired neutrino and background rate 10⁻¹
- Current classifiers in ORCA:
 - Trained with 7-string ORCA MC high energy sample (50 GeV - 5 TeV), with <u>LightGBM</u>
 - If apply on the online ORCA 4 data (for testing), processing time: < 1s/ event (on 48 CPU cores)
- Work in progress:
 - Training for MC low energy sample; train for ARCA


normalized classification score distribution of 4-string ORCA online data

Online Alert Sending and Reporting

- Alert sending policy:
 - Typical alert rate: few per month
 - Standard alerts will be distributed through private channel to observing teams upon MoU agreements like ANTARES.
 - After a commissioning phase, notable events will trigger alerts that will be distributed publicly to the astro community [Open Public Alert program]
- Alert distribution:
 - $\circ \quad \ \ via the GCN network$
 - Message: VO event (XML file)
 - Tool used: Comet
 - Open question: One or several brokers for public and private alerts for both KM3NeT detectors?

- Reporting:
 - SMS/email to alert KM3NeT shifters
 - Automatic GCN notices in case of very interesting neutrino signals
 - KM3NeT subgroup shifters (check detector stability, update reconstructions, etc)
 - GCN circular sent for refined information or identified counterpart (+ retraction).
 - Results displayed in public/internal web

KM3NeT VO Event format

* ID

* Detector (ARCA/ORCA)

* Time

* RA, DEC

* Error box 50%, 90% (TOC)

* Energy estimator

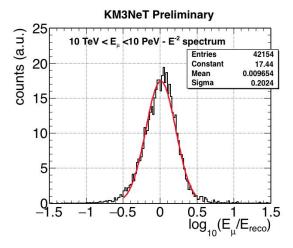
* Reconstruction quality

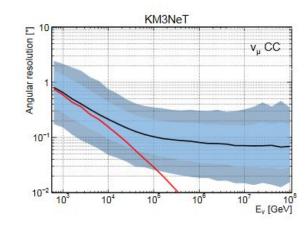
* Neutrino type (track / shower)

* Probability of neutrino

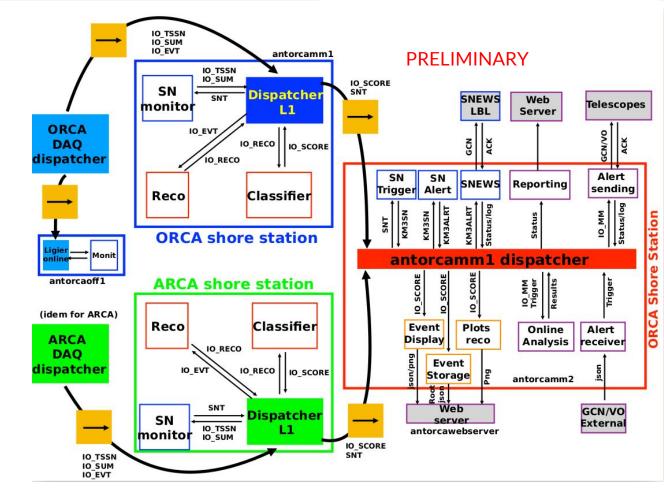
* Type of alert triggers

* Multiplicity (i.e. number of events in given time and space windows)


Summary & Outlook


- KM3NeT is being constructed.
 - Current running:
 - ORCA 4 strings
 - ARCA 1 string (temporarily shut down for maintenance at shore station)
 - Two new ORCA strings planned to be deployed during the week of November 25, 2019 or mid January, 2020 depending on the weather
- Having a great angular resolution, a large energy range and full sky coverage, KM3NeT will contribute enormously to the multi-messenger community.
- The KM3NeT online analysis framework is under development we are working to make it ready in 2020

Backup


ARCA track resolutions

Online Architecture Overview

