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Higgs sector in SM

In the Standard Model (SM), the Higgs sector is described by

L = (Dug)'(D"¢) + 11 (') — A(9T9)?,

After symmetry breaking, the Higgs field can be written as
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In the broken phase the Lagrangian takes the form
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The EW gauge boson and Higgs masses are expressed as
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Higgs sector in BSM

In the x framework “Handbook of LHC Higgs Cross Sections” 1307.1347
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computation A[ftb] A/A(LO) BI[fb] B/B(ILO) CIfb] C/C(LO)
LO m, fin 35.0 -23.0 4.73

NLO m, fin 62.6 1.79 -44.4 1.93 9.64 2.04
NLO m, fin x NNLO SM FTApprox 70.0 2.00 -49.6 2.16 10.8 2.28

NNLO + NNLL m; — oo x
NNLO+NLL SM (partial m, fin)  71.3 2.04 -4°7.7 2.08 9.93 2.10
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Long history in high precision calculations
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Constraint on Higgs quartic self-coupling

Triple-Higgs production provides a direct probe of the Higgs quartic self-
coupling. However, the cross section is 300 times smaller than double-Higgs
production cross section.
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Constraint on Higgs quartic self-coupling
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[s it possible to derive the constraint in another way?
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A more realistic function form
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HEFT

* To describe the new physics beyond the SM, we often take a consistent
effective field theory framework.
 HEFT: Higgs field as a singlet, non-linear, no explicit constraints on

couplings
LurrT = L2+ L4
2 H H\?2 4
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Buchalla et al, 1307.5017 10



Renormalization

The renormalized Lagrangian in the k framework after EW gauge symmetry breaking:
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Renormalization

We choose the renormalization scheme in which there is no tadpole contributions.

m? = 24v* and (82, — 6Z, — 26Z,)u*v + 8T = 0 with 5T the one-loop diagrams.

313V 1 -
b= il e
1672 € mz

We choose the on-shell renormalization scheme for the Higgs mass.
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Since W/Z mass corrections are not affected by the Higgs self-couplings at one-loop, we can
simply take 6Z, = 0.
> H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716



Renormalization

The coupling modifier «; is renormalized in the MS scheme.
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Higgs pair production at the LHC

o(pp — HH + X) [fb]
My = 125 GeV

1000 }

100 }

-t

10

gg — HH

qq' — HHqq},
'ﬂqq/gg — tEHH ~

NN oo qq —+ ZHH
£
0.1 - : - :
8 25 o0 (D 100

Vs [TeV]

14

e gluon fusion

g H
Q P

4
--——
~

NNLO in QCD
e vector boson fusion

H
q
NNLO in QCD
e double Higgs—strahlung
q W.Z
W, Z
. H
B ~ - -
q o H
NNLO in QCD

[1.B. et al, JTHEP 1304 (2013) 151]

e associated production with top quark

s Qo

& 0000 —__
NLO in QCD

Frederix et al, Phys.Lett. B732 (2014) l-l»ll



Updated function forms

The A dependent correction is

K, e doies et 2 S 2 g
50ggF’EW = (0.075x; —0.158x; —0.006k; «; —0.058k; +0.070x; «x; —0.149¢; ) tb
K) o 4= 3 2 o 2 &
50VBF’EW — (0'0215'%}1 0’0324'%}1 0.00191</13H1<,14H 0‘0043'{&31{ + O.OISIK%HK,MH 0.021 1K‘/14H) fb
ggF VBF
H)\BH Kl)le K K K K K K .
OO | ONNLO-FT | 9EW | 91O | ONNNLO 00 gy T.he .QCD C.orrectlons s
—, | significant in ggF, but not
1 1 | 16.7 31.2 -0.225 | 1.71 | 1.69 | —2.30 x 10 s
sensitive 1o k3.
3 1 | 859 18.4 1.28 | 3.59 | 3.53 8.35 x 1071
6 1 67.3 161 60.6 | 25.1 24.6 20.7 The EW corrections are 91%
1 3 |16.7 31.2 -0.393 | 1.71 | 169 | —3.89x 102 | (82%) in ggF (VBF) for k3 = 6.
1 6 | 16.7 31.2 -0.646 | 1.71 | 1.69 | —6.27 x 1072
3 | 3 |859| 184 130 | 359 | 353 | ss0x10-1 | Th€dependence onky is weak.
6 6 |67.3 161 61.0 | 25.1 | 24.6 20.7

H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716
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More stringent constraint

ATLAS (CMS) limit
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Sensitvity to Ky
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Sensitvity to Ky
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This is only partial NNLO correction!
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Sensitvity to Ky
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Comparison with SMEF'T

« SMEFT: Higgs field as a doublet, Wilson coefficients suppressed by A
2 2

" b
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Borowka et al, 1811.12366
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Comparison with SMEF'T

If the new operators are renormalized in the MS scheme. We find that the
amplitude of gg — H* — HH is different from that in HEFT.

2
iMSMEFT2 — T M 3my (k3 — 1) [ — (3 —V/3m)Kk3 + (k3 — 3k3 — k4)(1 + 1n ::—12%)]

H

iM1i,0 327202 K3

If we require that the amplitude remains the same, we have to change the
renormalization condition. The renormalization of the dimension-six
operator is not in MS any more.

(5Zd6 )ﬁnite — (5ZA)ﬁnite

22 J.L. Ding, H.T. Li, JW, 2512.XXxXXX



Comparison with SMEFT

If the new operators are renormalized in the MS scheme. We find that the
amplitude of gg — H* — HH is different from that in HEFT.

2
iMSMEFT2 — T M 3my (k3 — 1) [ — (3 —V/3m)Kk3 + (k3 — 3k3 — k4)(1 + 1n :%—1;)]

H
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If we require that the amplitude remains the same, we have to change the
renormalization condition. The renormalization of the dimension-six
operator is not in MS any more.

(5Zd6 )ﬁnite — (5Z)\)ﬁnite

MS in HEFT is not MS in SMEFT!

22 J.L. Ding, H.T. Li, JW, 2512.XXxXXX



Summary

Compared with the Higgs couplings to EW gauge bosons or third-
generation fermions, the Higgs self-couplings remain only weakly
constrained at LHC Run 2.

Probing the Higgs self-couplings at the HL-LHC and future colliders via
multi-Higgs production explores largely uncharted model and
parameter space and provides genuine discovery potential, even if
single-Higgs observables show no anomalies.

Fully exploiting the discovery potential of multi-Higgs production
channels requires including higher-order perturbative corrections
induced by both QCD and EW interactions in the corresponding
theoretical predictions.

Thanks a lot for your attention!
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HEFT

0'Ho'H 0/Ho H
L4 = —agapn1 02 Tr[Vqu] — ddayy2 vzﬂ e[V,
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H? sa , H\ H .
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LIH
+

H\ oH
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2 2
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H

Brivio et al, JHEP, 1403, 024
Gavela, Kanshin, Machado, Saa, JHEP, 1503, 043

Renormalization:
Guo, Ruiz-Femenia, Sanz-Cillero, PRD92,074005(2015)

Background field method: Buchalla, et al, NPB, 928,93 (2018), PRD104,076005(2021)

* Scattering amplitude: Herrero, Morales, PRD106,073008 (2022)
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Comparison with SMEFT

If we require that the amplitude remains the same, we have to change the
renormalization condition. The renormalization of the dimension-six
operator is not in MS any more.

(5Zd6 )ﬁnite — (5Z)\)ﬁnite

3x3 [1 3 3\ [1 2
57 = 1 1 1 1
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Comparison with SMEFT

If we require that the amplitude remains the same, we have to change the
renormalization condition. The renormalization of the dimension-six
operator is not in MS any more.

(5Zd6 )ﬁnite — (5Z)\)ﬁnite

3x3 [1 I 3\ [1 I
Ty = — 28 1 1 1 1
02 167T[+nm2+]+167r[+nm2+]
3Agv° 3—|—3ln L 16— /3r|,
8m2m?2 | €

MS in HEFT is not MS in SMEFT!
A detailed comparison of the two schemes is on the way.

26 J.L. Ding, H.T. Li, JW, 2512.XXxXXX



