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Diversity problem:
Angular number More and more dSphs were found!
Some of them are DM-rich but some are DM-poor.
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Neutrino fog

Is WIMP crisis or Human panic?

Lower energy,
higher exposure, or
wrong DM density?

* p-wave
 Resonance

* Forbidden DM
e Coannihilation
Secluded DM

.| Velocity dependent annihilations!

104
invisible interactions



The MeV gap
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It can be interesting to look DM physics at the MeV gap.



Challenges of MeV
dark matter




The light DM mass region

Can we 9o to the region below (7eV?
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Cosmological Lower Bound on Heavy-Neutrino Masses
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The present cosmic mass density of possible stable neutral heavy leptons is calculated
in a standard cosmological model. In order for this density not to exceed the upper lim-
it of 2x 102 g/em?, the lepton mass would have to be greater than a lower bound of the

order of 2 GeV, : : e
Unless, a vew light mediator is introduced!



Simplicity and Light mediator

Z_2 odd scalar mediator (like
squark) + SM fermion. LEP mass

X SM @®
SM
X limit for charged mediator is
@ heavier than 100 GeV.
X S
X SM @

Z_2 odd fermion mediator (like
Chargino) + SM gauge boson.

t-chanvel s-chawvel Invisible decay gives a severe
annihilation anninilation limit.

Therefore, an MeV mediator of the the DM annihilation
to SM pair via t-channel CANNOT be Z_2-odd.

od Higgs portal or dark photon portal?




« DM annihihlation injects energy into
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gas to ionize and heat Hydrogen.
For sub-GeV DM with correct relic
density, s-wave may be exculded?
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CMB constraints
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p-wave

resonance

m, =100 MeV ]
de = 5 MeV ]

Resonance annihilation
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The velocity is ~10-8 ¢
during recombination
epoch.

p-wave annihilation
cross-section is
suppressed by the
velocity .

It requires an extreme
fine-tunning for
resonance annihilation in
order to be testable in
CMB data.
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Thermal dark matter

Scalar

¢

Heat travsfer can be via the

[xf’ﬁxf xx < ff

greev or oranoec+blue.

Standard
Model

Likelihood Constraints
- = QOSPh2 = (0.1193 4+ 0.0014 [90];
¢p < ff Relic abundance Gaussian . [20]
of < of Oays = 10% x QIPR2.
¢ <> SMs o N either (I'Qy > Hyo), or
qu SM <+ SMs Equilibrium Conditions

(IESu > Hro and 'Y > Hryo)

DM direct detection

Half Gaussian

9GeV < mg < 10TeV (LZ [91]),
3.5GeV < my < 9GeV (PANDAX-AT [16]),
60 MeV < my < 5GeV (DarkSide [92]).

Aj\’reff

Half Gaussian

ANeg < 0.17 for 95% C.L. [90]

BBN

Conditions

if (mg > 2m;) then 74 < 1 s [93],

if (mgy < 2my) then 74 < 10° s [94].

d Must be frequent momentum exchangel!
(Common Problems of MeV DM)
1 Number density can be discribed by

n~exp(-m/T)
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Z9 even mediator

types Lagrangian

e
L1 = (gpxx + arf )

_ Ly = (gpXx + g7 fiv’ fo
y and ¢ 5 -
L3 = (gpXiv’'x + grfflo
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-----T'J I N EEE

Ls = (gpX 17’ x + gr " )V,
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x and ¥,

- .
a=10

Case (ii)

(ov)ap

~ a + w?

DD

L7 = (gox"x + gffﬁ.-”f}l",, Case (i) |Case (C)|Eq. (B4)
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Sa

DM phi

cos

) B sinf
.Sf’imD—T(cswxﬂpqﬁmsxﬂ—(

chiy +cphji75;5).

Abdughani, Fan, Lu, Tang and Tsai,
JHEP 07 (2022), 127

The joint contribution of |¢s| = |¢,| leads to s-wave

annihilation of Yy — ¢¢




(1) Scalar DM and scalar mediator (s-wave): Lq¢q = _,ﬂt,jDSngg) i fo_ft,-'i

(i) Dirac DM and scalar mediator (p-wave): Lr¢ = gpYx¢ + gfffqﬁ.
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Direct detection.
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Only resonance, forbidden,
and secluded annihilation
mechanisms remain.

Secluded DM with s-wave
annihilation is completely
excluded.

The lower mass limits for DM
vary between the three
mechanisms.



DM-electron scattering

Electrophilic DM with s-wave Electrophilic DM with p-wave

I
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* In the electrophilic case, direct detection experiments impose strong
constraints on the non-resonance parameter space due to tree-level DM-
electron scattering.

« However, VLAST can effectively probe the resonance region that escapes
these bounds.




Light thermal
dark matter in
minimal Higgs

portal model




Basic and minimum Lagrangian

¥ X-EYSX = V(@,H),

psendo-scalar

Y rteraction

Scalar interaction Wixing between New
X SM mediator and SM Higgs.
r————— — - — — — — — - A minimum setup:
|_z¢m3—°°;9(cs¢;zx +c,bFirsy)+ S“;‘g(csh;zx +ehgivsy) | one SW singlet Majorana DM + one

SWM singlet scalar mediator,



Possible parameter space

Jﬁfhc density and thermal conditions.
10% T T T T

E—ﬂm+2 7(id—m, )y + [acb) —Efb;fx—?ﬁfinx V(9,H),

i

The unitarity, stability, and
perturbative constraints.

¢ signature Constraints |

See the upper limits of BR(h — ¢¢)BR(¢ — 11)*

Prompt*
o from Fig. 12 of Ref. [99] and Fig. 7 of Ref. [100].
L Higgs decay 5 199) K i)
% Displaced* See Ref. [101, 102
0 : :
1 0 — Long-lived* BR(h — inv.)ggy < 0.145 [103]
1 MeV < m, <30Gev, | QY E o =
X L - Prompt BR(B* — K*p~put) <3x 1077 [104]
e f .
] S Cp S 1’ E - B decay (1) sin® @ =2 2 x 10~° for the region
- Displaced 0.5 < mg/GeV < 1.5 and 1 < erg/em < 20 [105]
—1 S Cs S 17 10_1 (2) See Fig. 5 of Ref. [106] for details.

Long-lived®|  p, BR(B* — K*ww) = (2.3+0.7) x 107° [107]

1 MeV < my < 60GeV,

(1) BR(EKt = ntppt) <4 x 1078 [108]

—71'/6 < 0 < 71'/6, i Prompt (2) BR(KL — n%~et) < 2.8 x 1071 [109]
Kaon decay (3) BR(K, — w%u~pt) <3 x 10710 [110]
—1 TeV2 S ﬂ% S 1 TeV2 1 0 -2 3 Displaced CHARM detected events > 2.3 [111]
3 (1) BR(K7, — 7'vp) < 3.0 x 107[112)
—1TeV < H3 < 1TeV --_ Long-lived™ (2) See BR(K " — 7 v&) limits from
= « )\q) < i 10 Tig. 18 of Ref. [113] and Fig. 4 of Ref. [114] for details.




Possible parameter space
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Parameter space is finite and we may be able to probe them ALL!
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VLAST -closing the MeV gap
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Very Large Area Space
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Electrophilic DM with s wave |

PROBING RESONANCE REGION
BY VLAST (Leptonphilic)

10-22 Electrophilic DM with p-wave
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Property Value Notes
~ [6kpe From the Sun.
Stellar Mass (M, ) ~ 3 x 10° M Barvonic mass in stars,

Dynamical Mass (Mgy)

<5 x 1 M,

Total mass (stars + dark matter).

J-actor (0.5%)

Ty S, : Y T
~ 10 GeVem™ Dark matter annihilation luminosity,

Mass-to-Light Ratio (T)

~ 1000 Mz/Ls  Indicator of extreme dark matter dominance.

Draco is an ideal source for DM
gamma-ray detection.

s-wave anhnihilation remains
difficult to detect with future
VLAST.
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Summary

* The light thermal DM has a lower mass limit around MeV.

e Direct detection can also constrain the low mass
mediator mass region, but pseudoscalar can relax this

tension.

* Pseudoscalar can generate s-wave annihilation which is
testable in indirect detection.

* Considering CMB constraints, most of s-wave annihilation
with mass below GeV is excluded, while the resonance
for p-wave annihilations are still testable in future MeV

gamma ray telescopes, e.g. VLAST.




Thank you for
listening and please

stay on VLAST!



Electrophilic DM with s-wave
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