STRUCTURE OF A LOOP COMPUTATION

courtesy of Simone Devoto

Process definition

- e e T - :J
Feynman Amplztudes )

“(_.’—-

i* ————ee = T : -Ji
, Computatzon of the mterference terms |
i‘“- — S — - ﬁiﬂ
* Reductzon to a set of Master Integmls )
i'“ = ;':1,; : = - *——*:T
Fvaluatzon of the Master Integrals )
N — - e —J
4 Subtmctzon of the U 4 pales (renormalzsatzon)
o —
n Subtmctzon of the IR poles );
A . _)l
| Numerzcal evaluatwn in phase -space pomts |

Numerical grid



Solving Feynman integrals
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where [ is the name of the “integral family” — a specific value of momentum and mass of the k-th denominator is understood

The solution of a Feynman integral can be achieved by different techniques:

* direct numerical integration (naive, sector decomposition,...)
* integration of auxiliary parameters (Feynman, Schwinger,...)

- differential equations

A Feynman integral can be considered as an unknown function I = I(s,t,u, ..., my,my,...,€)
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which satisfies a (system of) linear first-order differential equations, with respect to kinematical invariants and masses, eg. — =A:1
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How can we write the matrix A ? How do we solve the system ?
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* Not all the Feynman integrals in one amplitude are independent
— exploit Integration-by-parts (IBP) and Lorentz identities to reduce to a basis of independent Master Integrals
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* The independent Master Integrals (Mls) satisfy a system of first-order linear differential equations
with respect to each of the kinematical invariants / internal masses

When considering the complete set of Mls, the system can be cast in homogeneous form:  dI(s;€) = A(s;¢€) - I(s; €)
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* Henn’s conjecture (2013): if a change of basis exists which leads to d](f; £) = EA(E) - J(E); £)
then the solution is expressed in terms of iterated integrals (Chen integral representation)
depending only on the results at previous orders in the ¢ expansion
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https://inspirehep.net/literature/756778
https://arxiv.org/abs/0707.4037

SeaSyde

https://github.com/TommasoArmadillo/SeaSyde
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Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345
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Evaluation of the Master Integrals by series expansions
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» Taylor expansion: avoids the singularities;
» Logarithmic expansion: uses the singularities as expansion points.

» Logarithmic expansion has larger convergence radius but requires longer
evaluation time. We use Taylor expansion as default.
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