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Feynman Amplitudes

Process definition

Reduction to a set of Master Integrals

Evaluation of the Master Integrals
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Solving Feynman integrals

   

where   is the name of the “integral family”  → a specific value of momentum and mass of the k-th denominator is understood

I[α0, α1, …, αl] = ∫
dnk1

(2π)n ∫
dnk2

(2π)n

1
[k2

1 − m2
0]α0 [(k1 + p1)2 − m2

1]α1 … [(k1 + k2 + pj)2 − m2
j ]αj … [(k2 + pl)2 − m2

l ]αl

I

The solution of a Feynman integral can be achieved by different techniques:

   ・direct numerical integration (naive, sector decomposition,…)
   ・integration of auxiliary parameters (Feynman, Schwinger,…)
   ・differential equations

A Feynman integral can be considered as an unknown function 

   which satisfies a (system of) linear first-order differential equations, with respect to kinematical invariants and masses,   e.g.     

How can we write the matrix  ?   How do we solve the system ?

I = I(s, t, u, . . . , m0, m1, . . . , ε)

∂ ⃗I
∂s

= A ⋅ ⃗I

A



Differential equations and IBPs
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  • Not all the Feynman integrals in one amplitude are independent   
      → exploit Integration-by-parts (IBP) and Lorentz identities to reduce to a basis of independent Master Integrals
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dnk1

(2π)n ∫
dnk2

(2π)n
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  • Henn’s conjecture (2013): if a change of basis exists which leads to                                      
                                      then the solution is expressed in terms of iterated integrals (Chen integral representation)
                                      depending only on the results at previous orders in the  expansion

d ⃗J( ⃗s; ε) = εÃ( ⃗s) ⋅ ⃗J( ⃗s; ε)

ε

  • The independent Master Integrals (MIs) satisfy a system of first-order linear differential equations
       with respect to each of the kinematical invariants / internal masses
     When considering the complete set of MIs, the system can be cast in homogeneous form:     d ⃗I( ⃗s; ε) = A( ⃗s; ε) ⋅ ⃗I( ⃗s; ε)
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where the last equation has been obtained as IBP identity for the tadpole 7.

6.2. Differential equation for J(D, k2)

The master integral J(D, k2) is an analytic function of the argument k2 and it can be viewed as the
solution of a suitable differential equation. Let us see how to build and solve such an equation. For
J(D, k2) the following trivial identity holds,

∂J

∂kµ
=

∂J

∂k2

∂k2

∂kµ
= 2kµ

∂J

∂k2
. (82)

By contracting (82) with the vector kµ we have

kµ
∂J

∂kµ
= 2k2 ∂J

∂k2
. (83)

On the other hand

∂J

∂kµ
=

∫
dDp

(2π)D−2

∂

∂kµ

(
1

D1D2

)

=

∫
dDp

(2π)D−2

2(pµ − kµ)

D1D2
2

, (84)

so

kµ
∂J

∂kµ
=

∫
dDp

(2π)D−2

2(p · k − k2)

D1D2
2

=
︸︷︷︸

2p·k=D1−D2+k2

=
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dDp
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1

D2
2

−
∫
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1
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−
∫

dDp
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k2

D1D2
2

=

= − − k2 (85)

By substituting Eq. (85) in Eq. (83) we have

d

dk2
=

1

2k2
− 1

2k2
− 1

2
, (86)

which is rewritten, thanks to the second identity of the (77) and to (81), as a non-homogeneous
first-order differential equation for J(D, k2)

d

dk2
+

1

2

[
1

k2
− (D − 3)

(k2 + 4m2)

]

= − (D − 2)

4m2

[
1

k2
− 1

(k2 + 4m2)

]

. (87)

Eq. (87) contains the boundary condition for the solution. In fact, thanks to the analytic properties
of Feynman integrals, we know that J(D, k2) must be a regular function in k2 = 0, that is
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{ f′ (x) + 1
x2 − 4x + 5 f(x) = 1

x + 2
f(0) = 1

fhom(x) = xr
∞

∑
k=0

ckxk

rc0 = 0
1
5 c0 + c1(r + 1) = 0
4
25 c0 + 1

5 c1 + c2(2 + r) = 0

…

fhom(x) = 5 − x − 3
10 x2 + 11

150 x3 + . . .

fpart(x) = fhom(x)∫
x

0
dx′ 

1
(x′ + 2) f −1

hom(x′ )

= 1
2 x − 7

40 x2 + 2
75 x3 + . . .

A Simple Example

Method implemented in the Mathematica package DiffExp for real kinematic 
variables [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 

(see also AMFLOW [X. Liu and Y.-Q. Ma, arXiv: 2201.11669])

f′ hom(x) =
∞

∑
k=0

(k + r) ck x(k+r−1)

SOLVING D.E. B SERIES EXPANSION

f(x) = fpart(x) + C fhom(x)

f(0) = 1 → C = 1
5

Expanded around x′ = 0

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345
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TAYLOR VS LOGARITHMIC EXPANSION
➤ Taylor expansion: avoids the singularities; 
➤ Logarithmic expansion: uses the singularities as expansion points. 
➤ Logarithmic expansion has larger convergence radius but requires longer 

evaluation time. We use Taylor expansion as default.

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345


