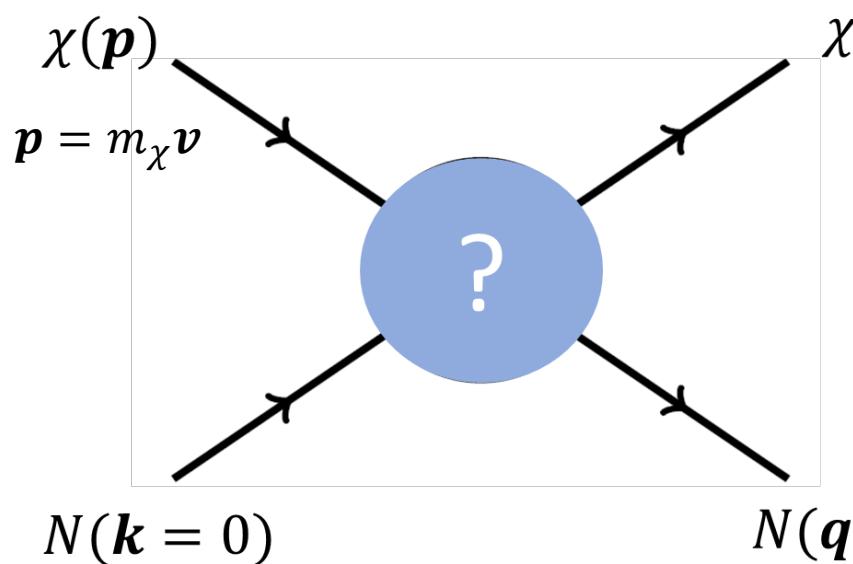


kinematics

Detector @ $T \approx 300K \rightarrow K \approx K_B T \sim 0.025 \text{ eV} \rightarrow$ In the **lab frame** we can safely neglect the nucleus thermal motion



$$E_i = E_f \rightarrow \frac{p^2}{2m_\chi} = \frac{q^2}{2m_N} + \frac{(\mathbf{p} - \mathbf{q})^2}{2m_\chi}$$

$$\rightarrow \mathbf{p}\mathbf{q} = \frac{q^2 m_\chi}{2\mu_{\chi N}} \quad \text{Where } \mu_{\chi N} = \frac{m_\chi m_N}{m_\chi + m_N}$$

$$\text{Now, } \mathbf{p}\mathbf{q} = pq \cos\theta_{lab} \rightarrow q = \frac{2\mu_{\chi N}}{m_\chi} p \cos\theta_{lab}$$

$$E_R = \frac{q^2}{2m_N} = \frac{2\mu_{\chi N}^2}{m_N} v^2 \cos^2\theta_{lab}$$

$$\text{Max momentum transfer } (\theta_{lab} = 0) \rightarrow q_{max} = \frac{2p\mu_{\chi N}}{m_\chi} \quad \Rightarrow \quad E_R^{max} = \frac{q_{max}^2}{2m_N} = \frac{2\mu_{\chi N}^2}{m_N} v^2$$

For a given Energy threshold E_R there is a minimum velocity of the WIMP to be visible in the detector

$$v_{min} = \sqrt{\frac{E_R m_N}{2\mu_{\chi N}^2}}$$

Expected rate in the detector

The expected WIMP rate in the detector is given by $R \approx N_T \times n_\chi \times \langle v \rangle \times \sigma$

where:

$N_T = M_{det} / m_N$ is the number of target nuclei (NOTE: here M_{det} is in the same units as m_N)

$n_\chi = \rho_\chi / m_\chi$ is the number density of WIMPs and m_χ is the WIMP mass

ρ_χ is the DM local density

$\langle v \rangle$ is the mean relative velocity WIMP / detector

σ is the cross section, that in general depends on the transferred moment

If $f(\mathbf{v})$ is the WIMP velocity distribution in the **detector's frame**, so $\langle v \rangle = \int_0^\infty v f(\mathbf{v}) d^3 \mathbf{v}$ so:

differential rate per unit of recoil energy:

$$\frac{dR}{dE_R} = \frac{M_{det} \rho_\chi}{m_N m_\chi} \int_{v_{min}}^\infty \frac{d\sigma}{dE_R} v f(\mathbf{v}) d^3 \mathbf{v}$$

where $v_{min} = \sqrt{\frac{E_R m_N}{2 \mu_{\chi N}^2}}$

The Master formula

$$\frac{dR}{dE_R} = \frac{M_{det}\rho_\chi}{m_N m_\chi} \int_{v_{min}}^{v_{esc}} \frac{d\sigma}{dE_R}(q, v) v f(v) d^3v$$

$$\frac{d\sigma}{dE_R}(v, q) = \frac{d\sigma}{dE_R}(v, 0) F^2(q)$$

nuclear form factor

$$\frac{d\sigma}{dE_R}(v, 0) = \frac{\sigma^0}{E_R^{max}} = \frac{m_N}{2\mu_{\chi N}^2 v^2} \sigma^0$$

DM-nucleon
SI cross-section

$$(\text{consider only SI}) \quad \sigma^0 = \sigma_{SI}^0 = \frac{A^2 \mu_{\chi N}^2}{\mu_{\chi n}^2} \sigma_{SI}$$

DM-nucleon
SI cross-section

$$\frac{dR}{dE_R} = \frac{M_{det}\rho_\chi}{2m_\chi \mu_{\chi n}^2} A^2 \sigma_{SI} F_{SI}^2(q) \int_{v_{min}}^{v_{max}} \frac{f(v, t)}{v} d^3v$$

WIMP mass

$\eta(v_{min}, t) = \int_{v_{min}}^{v_{esc}} \frac{f(v, t)}{v} d^3v$ is the **mean inverse speed function** (note that it depends on time due to

the Earth rotation around the Sun) and $v_{min} = \sqrt{\frac{E_R m_N}{2\mu_{\chi N}^2}}$, $\mu_{\chi n} = \frac{m_\chi m_n}{m_\chi + m_n}$

Velocity in the lab reference system: time dependency

$$\mathbf{v}_{gal} = \mathbf{v} + \mathbf{v}_\odot + \mathbf{v}_\oplus(t)$$

Where

\mathbf{v}_{gal} : **WIMP velocity in the GALACTIC reference frame**

\mathbf{v} : **WIMP velocity in the laboratory reference frame**

\mathbf{v}_E : **Earth velocity with respect to the Galaxy frame**, $\mathbf{v}_E = \mathbf{v}_\odot + \mathbf{v}_\oplus(t)$

$\mathbf{v}_\odot = \mathbf{v}_0 + \mathbf{v}_{pec}$: velocity of the Sun with respect to the galaxy

\mathbf{v}_0 : **local standard of rest velocity (\mathbf{v}_0)**

\mathbf{v}_{pec} : solar peculiar velocity

$\mathbf{v}_\oplus(t)$: **velocity of the Earth with respect to the Sun**

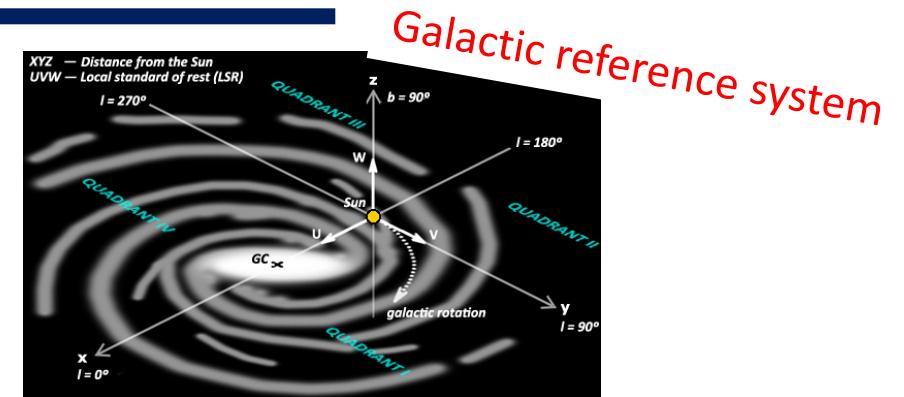
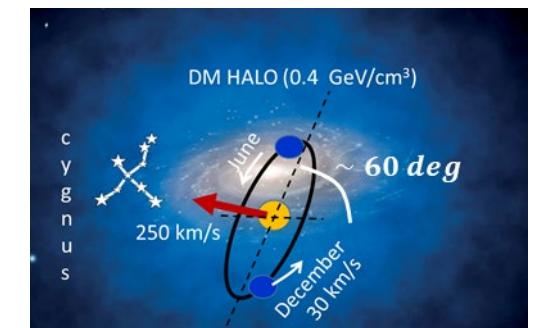


Table 1 Suggested Standard Halo Model parameters. Vectors are given as (v_r, v_ϕ, v_θ) with r pointing radially inward and ϕ in the direction of the Milky Way's rotation. Analyses insensitive to annular modulation can approximate $\mathbf{v}_\oplus(t)$ with Eq. 12

Parameter	Description	Value	References
ρ_χ	Local dark matter density	$0.3 \text{ GeV}/c^2/\text{cm}^3$	[9]
v_{esc}	Galactic escape speed	544 km/s	[45]
$\langle \mathbf{v}_\oplus \rangle$	Average galactocentric Earth speed	29.8 km/s	[41]
\mathbf{v}_\odot	Solar peculiar velocity	$(11.1, 12.2, 7.3) \text{ km/s}$	[46]
\mathbf{v}_0	Local standard of rest velocity	$(0, 238, 0) \text{ km/s}$	[47,48]

$$\mathbf{v}_\oplus(t) = \langle |\mathbf{v}_\oplus| \rangle \times \begin{pmatrix} 0.9941 \cos(\omega \Delta t) - 0.0504 \sin(\omega \Delta t) \\ 0.1088 \cos(\omega \Delta t) + 0.4946 \sin(\omega \Delta t) \\ 0.0042 \cos(\omega \Delta t) - 0.8677 \sin(\omega \Delta t) \end{pmatrix}$$

where $\omega = 0.0172 \text{ d}^{-1}$ and t is the number of days since March 22, 2018

D. Baxter et al. "Recommended conventions for reporting results from direct dark matter searches" Eur. Phys. J. C (2021) 81:907 [2105.00599]

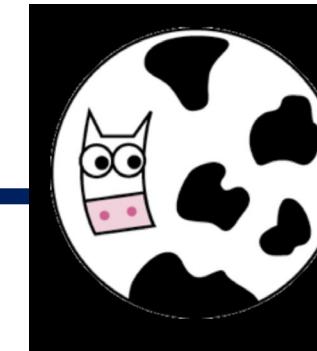
Standard halo model (SHM)

The standard halo model is an isotropic, isothermal sphere **in the galactic frame**, with density profile $\rho(r) \propto r^{-2}$. In this case the solution to the collisionless Boltzmann equation is a Maxwellian velocity distribution (ν_{gal} :DM ν in the galactic reference system)

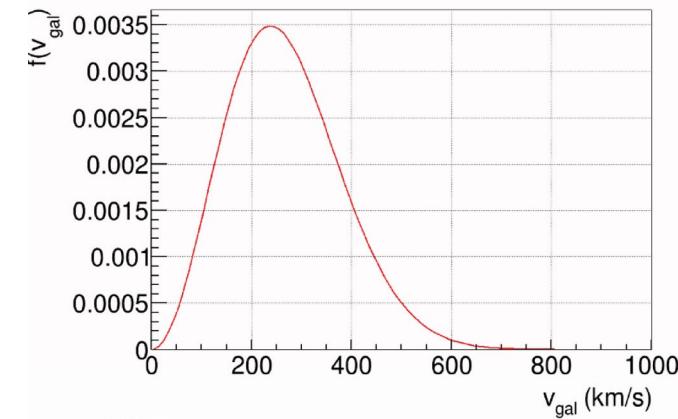
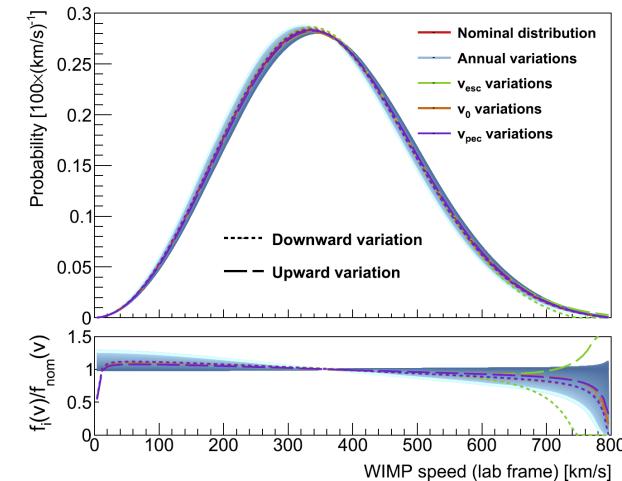
$$f_{gal}(\nu_{gal})d^3\nu_{gal} = \frac{1}{\nu_0^3 \pi^{3/2}} e^{-\nu_{gal}^2/\nu_0^2} d^3\nu_{gal}$$

Move to lab. frame

$$f(\nu, t) = f_{gal}(\nu + \nu_{\odot} + \nu_{\oplus}(t))$$



The spherical cow of direct WIMP searches (Gelmini)



The mean inverse speed function

$$\eta(v_{min}, t) = \int_{v_{min}}^{\infty} \frac{f(v, t)}{v} d^3v$$

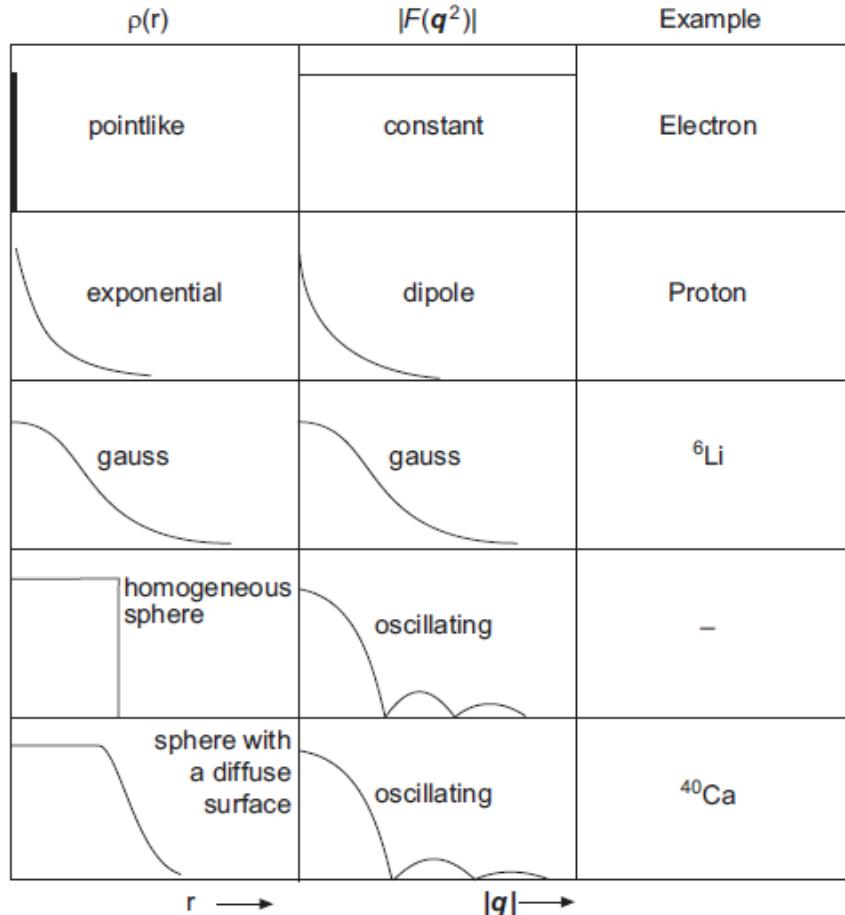
This is the integral to be solved for the DM halo model considered. For the SHM, this case the integral can be solved analytically. Defining:

$$x = \frac{v_{min}}{v_o}, y = \frac{v_{\odot} + v_{\oplus}(t)}{v_o}, z = \frac{v_{esc}}{v_o}$$

$$\eta(v_{min}, t) = \frac{1}{2yv_o} \frac{1}{N} \begin{cases} \text{erf}(x + y) - \text{erf}(x - y) - \frac{4}{\sqrt{\pi}} ye^{-z^2} & 0 \leq x \leq z - y \\ \text{erf}(z) - \text{erf}(x - y) - \frac{2}{\sqrt{\pi}} (z + y - x) e^{-z^2} & z - y < x \leq z + y \\ 0 & x > z + y \end{cases}$$

Here, $\text{erf}()$ is the error function and $N = \text{erf}(z) - \frac{2z}{\sqrt{\pi}} e^{-z^2}$ is a normalization factor

Spin independent form factor



An analytic expression for the FF (and the most commonly used in DD calculations) is that from Helm:

$$F_{\text{SI}}^2(q) = \left(\frac{3j_1(qR_1)}{qR_1} \right)^2 e^{-q^2 s^2}$$

$$\text{where } j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$$

is a spherical Bessel function of the first kind, **R_1 is an effective nuclear radius** and **s is the nuclear skin thickness**, These parameters that need to be fit separately for each nucleus, but good results are obtained with

$$R_1 = \sqrt{R^2 - 5s^2}, \quad R \approx 1.2A^{1/3} \text{ fm}, \quad s = 1 \text{ fm}$$

Other parametrizations can give more precise results for high q , see for example:

G. Duda, A. Kemper and P. Gondolo, "Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data", JCAP 0704:012,2007 [arXiv:hep-ph/0608035]

Functions in the python code

`vearth(t)`: Earth velocity

`eta(E, t, A, mW)`: mean inverse speed function

`FF(E, A)`: SI form factor

`rate(E, t, A, mW, sigmasI)`: differential rate $\frac{dR}{dE} = \frac{M_{det} \rho_\chi}{2 m_\chi \mu_{\chi n}^2} A^2 \sigma_{SI} F_{SI}^2 \eta$

`totalRate(Ei, Ef, t, A, mW, sigmaSI)`: $R = \int_{E_{min}}^{E_{max}} \frac{dR}{dE} dE$

`t` in days from March 22

`E` in keV

`mW` in GeV/c²

`sigmasI` in cm²

`A` is the mass number of the target

+ examples to plot Earth velocity, form factor, meas inverse speed function and differential rate

Exercises

- Plot the differential rate vs recoil energy for several targets: Ar(40), Ge(72), Xe(132)(*)
- Plot the differential rate vs recoil energy for several Wimp masses: 10, 100, 1000 GeV/c²
- Plot the differential rate vs recoil energy for 2nd June (timeMax) and 1st December (timeMin)
- For Xenon target and a WIMP of $m_\chi = 70 \text{ GeV}$, $\sigma_{SI} = 10^{-41} \text{ cm}^2$ and two different energy intervals ([0-60] keV and [10-60] keV):

- 1) Implement a function to plot the TOTAL rate in (E_i, E_f) : `ratevsTime (Ei, Ef, A, mW, sigmasI)`
- 2) Plot rate total vs time for 1 year
- 3) Compute the maximum rate (R_{max}), the minimum rate (R_{min}), the average rate (R_0) and the day corresponding to the maximum (t_{max})
- 4) In the same figure as before, plot the following approximation for the rate:

$$R_{approx} = R_0 + R_{mod} \cos(\omega(t - t_{max})) \quad \text{where } R_0 \text{ is the average rate and}$$
$$R_{mod} = \frac{1}{2}(R_{max} - R_{min}) \text{ and } \omega = 2\pi/365 \text{ d}^{-1}$$

- 4) Calculate the error (in %) of the approximation in t_{max} as:

$$err(t_{max}) = \frac{R(t_{max}) - R_{approx}(t_{max})}{R(t_{max})} \times 100$$

(*) in the python code you will find an example, just modify it