Constraining long-lived particles from Higgs boson decays at the LHC with displaced vertices and jets

Zeren Simon Wang 王泽人 (合肥工业大学 HFUT)

PhysRevD.110.055033 (ZSW2024)

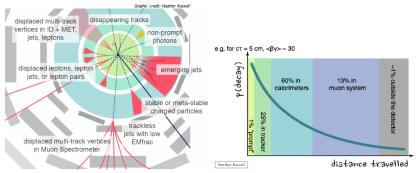
November 22nd, 2025 "超越标准模型前沿交叉"研讨会 中国江苏南京

Motivation

- The LHC has been focusing on searches for heavy new particles; large p_T or MET; NO discovery so far
- Increasingly more attention given to signatures related to long-lived particles (LLPs), among others
- LLP: produced, travel a macroscopic distance, and decay
- Predicted in various BSM scenarios and well motivated
 - $m_{\nu} \neq 0$ DM

- V ≪ mpi
- LLP candidates: dark scalar, heavy neutral leptons, axionlike particle, dark photon, RPV SUSY bino, inelastic DM, chargino (compressed SUSY), ...
- Dark scalar predicted in:
 - SM extended by a singlet scalar that mixes with h
 - Neutral-naturalness models that solve the little hierarchy problem
 - 2HDMs including SUSY
 - . . .
- Heavy neutral leptons predicted in:
 - \bullet SM extended by 3 $\nu_{\it R}$'s that mix with $\nu_{\rm e/\mu/\tau}$
 - $\mathit{U}(1)$ extensions of the SM such as $\mathit{U}(1)_{\mathit{B-L}}$

Long lifetime and LLP-search experiments


- Causes of the long lifetime:
 - Feeble couplings
 - Heavy mediators

- Small phase space
- . . .

- Experiments:
 - Beam dumps: PS191, NA62, SHiP, DUNE, ...
 - Neutrino detectors: Super-Kamiokande, IceCUBE, . . .
 - Colliders: LEP, BABAR, LHC, Belle II, ...
 - LHC far detectors: FASER(2), MoEDAL-MAPP1(2), MATHUSLA, CODEX-b, ...
 - ...
- Focus of the talk:

LLP searches at the LHC

LHC LLP searches

LLP signatures at colliders and the exponential decay distribution (H. Russell's talk)

- Disappearing track: <u>2309.16823</u>, <u>2201.02472</u>, ...
- DVs and missing transverse momentum: <u>2402.15804</u>, <u>1710.04901</u>, . . .
- DV and a lepton: <u>2003.11956</u>, . . .
- Displaced leptons: <u>2011.07812</u>, <u>2110.04809</u>, ...
- Delayed or non-pointing photons: <u>2209.01029</u>, ...
- DVs and jets: 2301.13866, recast instruction from ATLAS recast in JHEP 07 (2024) 209 by *K. Cheung, F.-T. Chung, G. Cottin, ZSW*

Recast & Reinterpretation

- Experimentalists have performed multiple (LLP) searches
- These reported searches constrained a limited class of models only
- How to obtain their bounds on other models predicting similar/identical signatures?

Pheno approach:

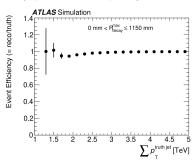
- Recast: follow event selections of experimental searches step by step
- Validation: reproduce the published cutflow or exclusion limits
- Reinterpretation: apply the same analysis on your favorite NP model to derive the corresponding limits

The ATLAS "DVs+jets" search

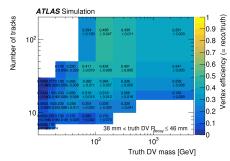
- Full Run-2 dataset of 139 fb⁻¹, $\sqrt{s} = 13$ TeV
- Signature: DVs + jets
- Event-level acceptance:

SR	High- <i>p</i> ⊤ jet	Trackless jet
Jet selection	$n_{\text{jet}}^{250} \ge 4 \text{ or } n_{\text{jet}}^{195} \ge 5$ or $n_{\text{jet}}^{116} \ge 6 \text{ or } n_{\text{jet}}^{90} \ge 7$	$n_{ m jet}^{137} \ge 4 ext{ or } n_{ m jet}^{101} \ge 5$ or $n_{ m jet}^{83} \ge 6 ext{ or } n_{ m jet}^{55} \ge 7$, $n_{ m disp. jet}^{70} \ge 1 ext{ or } n_{ m disp. jet}^{50} \ge 2$

Vertex-level acceptance:


At least one vertex should pass a list of vertex requirements:

- **1** 4 mm $< R_{xy} < 300$ mm and |z| < 300 mm
- ② At least one track should satisfy $d_0 > 2$ mm
- The displaced vertex should have at least 5 decay products of a massive particle satisfying the following requirements:
 - $oldsymbol{0}$ It should be a track with a boosted transverse decay length $>520~\mathrm{mm}$
 - 2 Its p_T and charge q should obey the relation $p_T/|q|>1$ GeV
- $m_{\rm DV}>10$ GeV; truth vertex constructed with the decay products passing the requirements above, for which the mass of each decay product is assumed to be m_{π^\pm}


Parameterized efficiencies

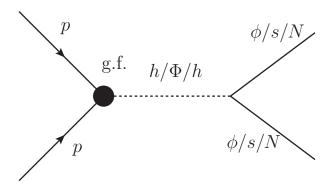
- Parameterized efficiencies provided by the ATLAS collaboration at both event- and vertex-levels that account for delicate requirements such as multi-jet trigger, jet filter, and material effects that are difficult to simulate
- Applied to truth-level objects!

 ϵ_{event} : functions of the truth-jet scalar p_T sum and R_{xy} of the furthest LLP decay ϵ_{vertex} : for reconstructing the DVs; functions of R_{xy} , m_{DV} , and the LLP decay-product multiplicity n_{trk}

Sample ϵ_{event} function

Sample $\epsilon_{\mathsf{vertex}}$ function

Background


- Erroneous merge of nearby DVs of small invariant masses by vertexing algorithms resulting in a high-mass DV
- Hadronic interactions between particles and detector materials
- Accidental crossings of a track with unrelated low-mass DVs

■ Background-event numbers expected to be $0.46^{+0.27}_{-0.30}$ and $0.83^{+0.51}_{-0.53}$ at the High- p_T -jet and Trackless-jet SRs, respectively

SR	Observed	Expected	\mathcal{S}_{obs}^{95}	\mathcal{S}_{exp}^{95}	$\langle \sigma_{\sf vis} angle_{\sf obs}^{95}$ [fb]
High- <i>p</i> _T -jet SR	1	$0.46^{+0.27}_{-0.30}$	3.8	$3.1^{+1.0}_{-0.1}$	0.027
Trackless-jet SR	0	$0.83^{+0.51}_{-0.53}$	3.0	$3.4^{+1.3}_{-0.3}$	0.022

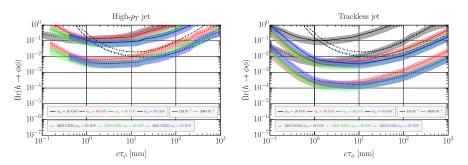
• We optimistically project the same level for the 3 ab⁻¹ int. lumi.

Signal-process topology

• $\phi/s/N$'s then decay into specific signal final states

$$N_{S} = \sigma(\mathsf{LLP}) \cdot \mathcal{L} \cdot \epsilon \cdot \left(\mathsf{Br}(\mathsf{sig.})\right)^{2}$$

$h \to \phi \phi$

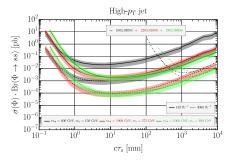

A light singlet scalar from SM-like Higgs-boson decays

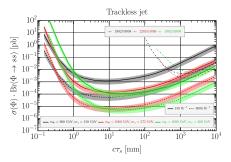
• mass range: $m_{\phi} \sim [10 \text{ GeV}, 62 \text{ GeV}]$

• 10 GeV: $m_{DV} > 10$ GeV

• 62 GeV: phase-space requirement

• Signal process: $pp \xrightarrow{g.f.} h \to \phi \phi, (\phi \to b\bar{b}, \phi \to b\bar{b})$


2403.15332: ATLAS search for DVs

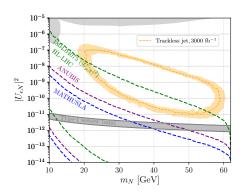

$$\Phi o$$
 ss

- Benchmark scenarios following ATLAS searches:
 - <u>1911.12575</u> <u>1902.03094</u>
 - $(m_{\Phi}, m_s) = (600 \text{ GeV}, 150 \text{ GeV})$
 - $(m_{\Phi}, m_s) = (1000 \text{ GeV}, 275 \text{ GeV})$
 - $(m_{\Phi}, m_s) = (1000 \text{ GeV}, 400 \text{ GeV})$

Signal process: $pp \xrightarrow{g.f.} \Phi \to ss, (s \to x\bar{x}, s \to x\bar{x}), \text{ with } x = b, c, \tau$

• $Br(s \to b\bar{b}) = 85\%, Br(s \to c\bar{c}) = 5\%, Br(s \to \tau\bar{\tau}) = 8\%$

2203.01009

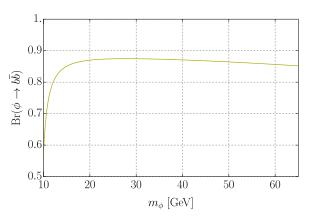

1902.03094 & 2203.01009: ATLAS searches for displaced hadronic jets

$h \rightarrow NN$

- Long-lived heavy neutral leptons (HNLs) from SM-like h decays
- $U(1)_{B-L}$ with N Majorana HNLs

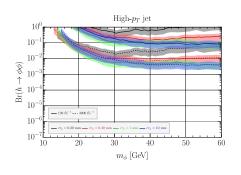
Signal process:
$$pp \xrightarrow{g.f.} h \rightarrow NN$$

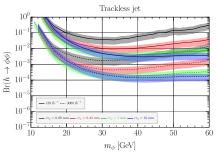
- Signal final state: $N \rightarrow \nu_e/e + jj$, j = u, d, c, s, b
- HNL production and decay decoupled


Summary

- No new heavy resonances have been found yet at the LHC
- Searching for (light) long-lived particles becomes more important
- (HL-)LHC can search for LLPs
- Higgs portal special and intriguing
- Applied a recast of an ATLAS search for DVs plus jets to scenarios of LLPs from Higgs-boson decays at the LHC
- LLPs decaying semi-leptonically or hadronically
- For the considered scenarios, trackless-jet SR more powerful than high- p_T -jet SR
- Particularly sensitive to LLPs with $c\tau$ between 1–100 mm
- Outlook: lower the jet- p_T thresholds to enhance sensitivities see JHEP05(2025)238 and 2510.05525

Thank You! 谢谢!


Back-up slides


$\mathsf{Br}(\phi o b ar{b})$ vs. m_ϕ

obtained with HDECAY 3.4

Further sensitivity plots for $h \to \phi \phi$

$h \rightarrow NN$

- Long-lived heavy neutral leptons (HNLs) from SM-like h decays
- $U(1)_{B-L}$, new particles: N, Z', H, ...
- N: Majorana HNLs

$$\Gamma(\textit{h} \rightarrow \textit{NN}) = \frac{1}{2} \frac{\textit{m}_\textit{N}^2}{\tilde{\textit{x}}^2} \sin^2 \alpha \, \frac{\textit{m}_\textit{h}}{8\pi} \left(1 - \frac{4 \textit{m}_\textit{N}^2}{\textit{m}_\textit{h}^2}\right)^{3/2}$$

- α: scalar-mixing angle
- g'_1 : gauge coupling of $U(1)_{B-L}$
- $\tilde{x} = m_{Z'}/2g_1'$: vev of the new scalar H
- Assume only one generation of N kinematically relevant and that N mixes only with ν_e

$$\mathrm{Br}(\mathbf{h} \to \mathbf{NN}) = \frac{\Gamma(\mathbf{h} \to \mathbf{NN})}{\Gamma(\mathbf{h} \to \mathbf{NN}) + \cos^2 \alpha \, \Gamma_{\mathsf{SM}}^{\mathbf{h}}}$$

$$m_N = 12 - 62 \text{ GeV}, |U_{eN}|^2 = 10^{-12} - 10^{-6},$$

 $m_{Z'} = 6 \text{ TeV}, g'_1 = 0.8, \tilde{x} = 3.75 \text{ TeV},$
 $m_H = 450 \text{ GeV}, \sin \alpha = 0.3$

$h \rightarrow NN$

Signal process:
$$\sigma(pp \xrightarrow{g.f.} h \to NN) = \cos^2 \alpha \cdot \sigma_h^{g.f.} \cdot \text{Br}(h \to NN)$$

- Decay width of the Majorana HNL: <u>2010.07305</u>
- Signal final state: $N \rightarrow \nu_e/e + jj$, j = u, d, c, s, b
- HNL production mediated by α and \tilde{x}
- HNL decay induced separately by $|U_{eN}|^2$