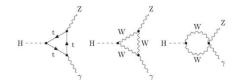


Results and future outlook for the H->Zy analysis on the ATLAS experiment.

Xiang Li

Supervisor: Kun Liu

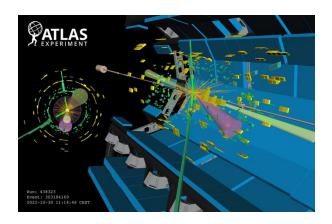
November 2025



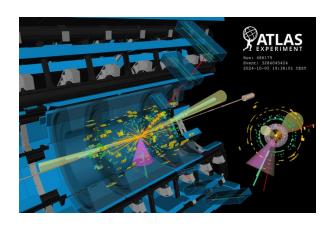
Overview

Analysis Objective: $\mathbf{H} \to \mathbf{Z} \gamma \to \ell \ell \gamma$

- a potential channel to explore physics Beyond the Standard
 Mode
- rare decay only via loop diagrams in the SM

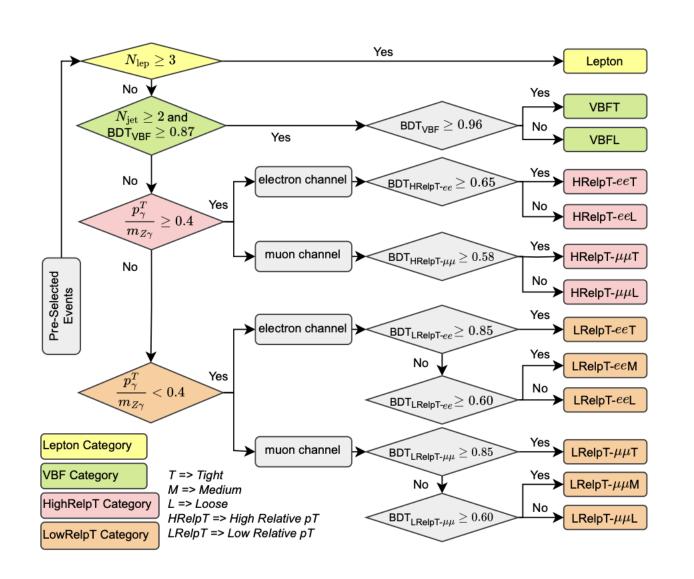


Partial Run 3 Data: **13.6 TeV** and integrated luminosity of **165 fb**⁻¹ Irreducible background


• the non-resonant production of Z bosons in association with a photon.

Reducible background

• inclusive Z boson production in which a hadronic jet is misidentified as a photon


Event display of $H \rightarrow Z\gamma \rightarrow ee\gamma$

Event display of $H \rightarrow Z\gamma \rightarrow \mu\mu\gamma$

categories

Events are classified into 13 categories.

Lepton category: Additional leptons

VBF category: at least 2 jets

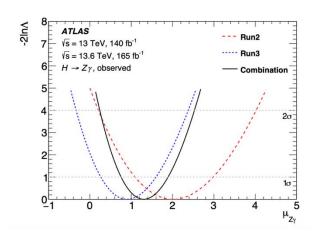
High/Low Rel-*pT* category :

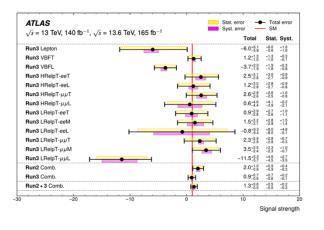
Separation between $ee\gamma/\mu\mu\gamma$ final states

BDT classifications for VBF, HRelpT and LRelpT categories.

Split events by their BDT score into **Tight**, (Medium) Loose regions.

Fit range optimization


- In each category we build signal modeling and background modeling
- A larger fitting range will result in the best function tending to be of higher order and a larger spurious signal. Therefore, we adjust fit range depend on each category distribution.
- Calculated the results for multiple mass ranges to find the optimal range for the background model.


Mass range	Pvalue for same mu case	significance	DNLL
110-150	0.0326985	1.84253	3.39493
111-150	0.0339938	1.82509	3.33095
113-150	0.032083	1.85102	3.42629
114-150	0.0319835	1.85241	3.43142
115-140	0.0249291	1.96118	3.84622
115-150	0.0284554	1.904	3.6252

Statistic result

Finally statistical results from the un-binned likelihood fit:

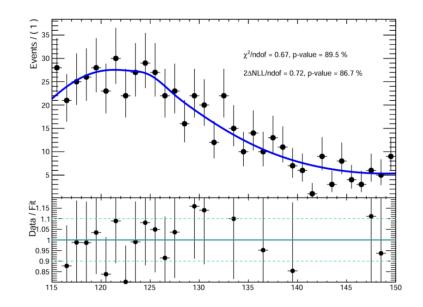
• Run 3 results:

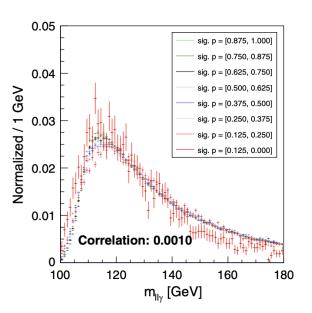
measured signal strength $\mu = 0.9^{+0.7}_{-0.6}$ (stat) $^{+0.2}_{-0.1}$ (syst)

Run 3 observed (expected) significance: 1.4 σ (1.5 σ).

• Run 2 + Run 3 combination:

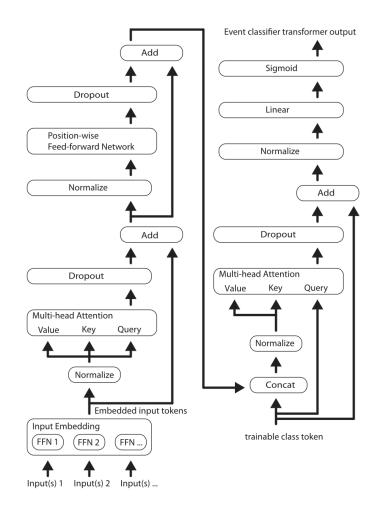
signal strength $\mu = 1.3 \pm 0.5 \text{(stat)} \pm 0.2 \text{(syst)}$


Run 2 + Run 3 combined observed (expected) significance: 2.5σ (1.9 σ).


arXiv:2507.12598 (2025)

Motivation of New Classifier

- In partial Run3 analysis, categorized by BDT shows high correlation with mass, which leads to difficulty in background modeling and spurious signal test.
- Recently study(<u>kim2024PRD</u>) shows that a new transformer neural network with special loss function based on CMS H->Zy MC dataset can enhance the significance and reduce the correlation between the network's output and the reconstructed mass.
- The purpose of this work is to test and evaluate the feasibility of the new event classifier on Atlas $H\rightarrow Z\gamma$ data, improve and use it in full Run3 H->Zy analysis.

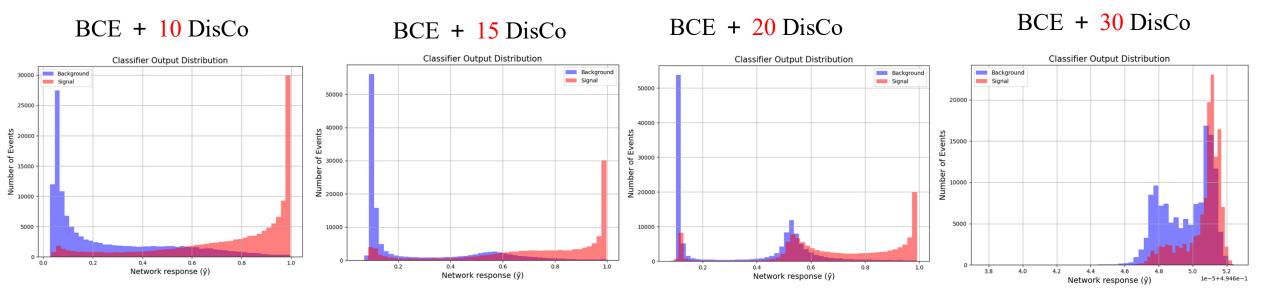


Method

Event classifier transformer neural network

Specialized loss function

Distance correlation (Disco) measures the dependence between output and mass

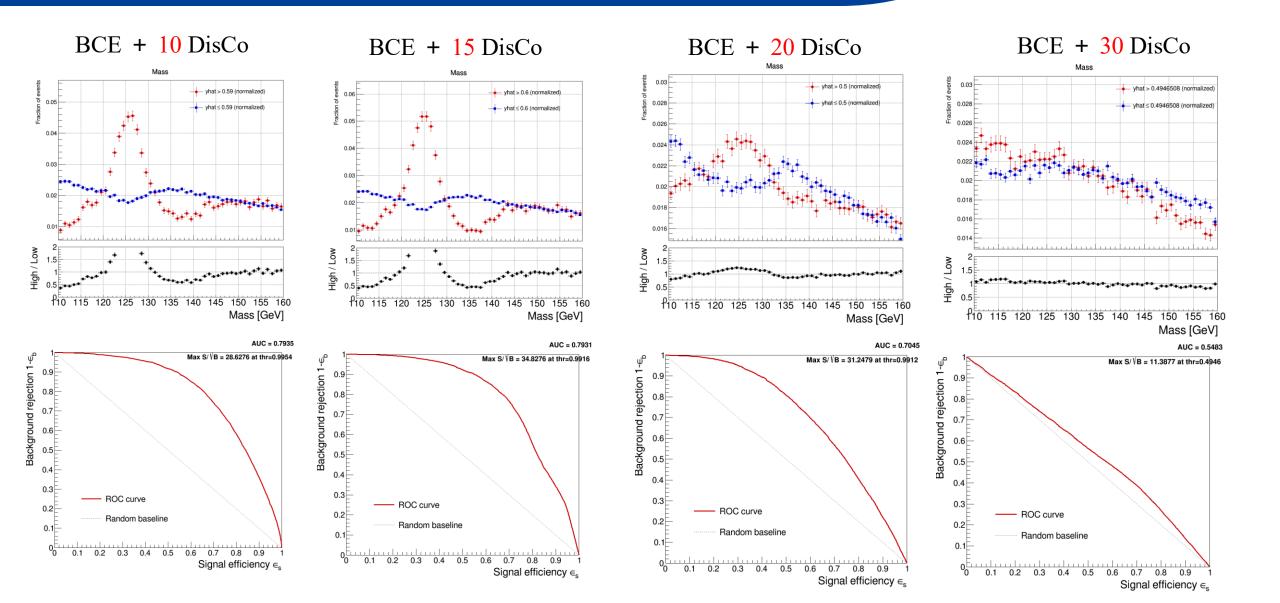

The DisCo term penalizes the neural network when y and mass are correlated.

$$d\text{Cov}^{2}(X,Y) = \int d^{p}s d^{q}t |f_{X,Y}(s,t) - f_{X}(s)f_{Y}(t)|^{2}w(s,t),$$

$$d\text{Corr}^{2}(X,Y) = \frac{d\text{Cov}^{2}(X,Y)}{d\text{Cov}(X,X)d\text{Cov}(Y,Y)}$$

Loss = Loss_{classifier}(
$$\hat{y}, y$$
) + $\lambda \cdot \text{DisCo(mass, } \hat{y}$).

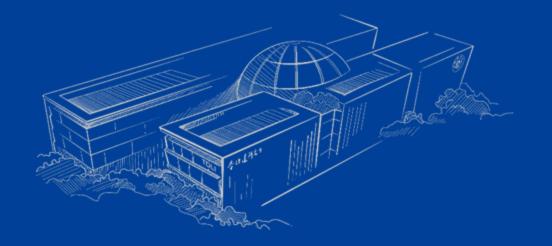
Result of VBF training set



Factor of disco	10	15	20	30
avg loss	0.481855	0.512391	0.584306	0.856971
Significance	46.635 +- 8.847	42.973 +- 4.999	36.411 +- 3.738	23.782 +-5.549

Result of VBF training set

Summary



- The Disco loss helps reduce the strong correlation with mass, but it also weakens classifier performance.
- I have applied the classifier transformer method and obtained preliminary results, next step will be to optimize the network parameters further and better understand its behavior.
- partial Run 3 HZy analysis.
- statistical work signal background model cross-check
- plan to the Full Run 3 analysis:
- event classifier, the signal and background models, statistical analysis.

Thank you for your attention!

Back up

Setup

- **Input**: x:features (25) y:classID (signal1 background0)
- **Spectators**: llg_m_Zmassconstraint (for Disco)
- Model:event classifier transformer neural network
- Loss function :BCE + λ DisCo

$$BCE(\hat{y}, y) = -y \ln(\hat{y}) - (1 - y) \ln(1 - \hat{y}),$$

- **output**: probability of the event (sigmod)
- Batchsize 1000 epoch 1000

Key factor: loss, significance, AUC of ROC

Model selection: Significance-best

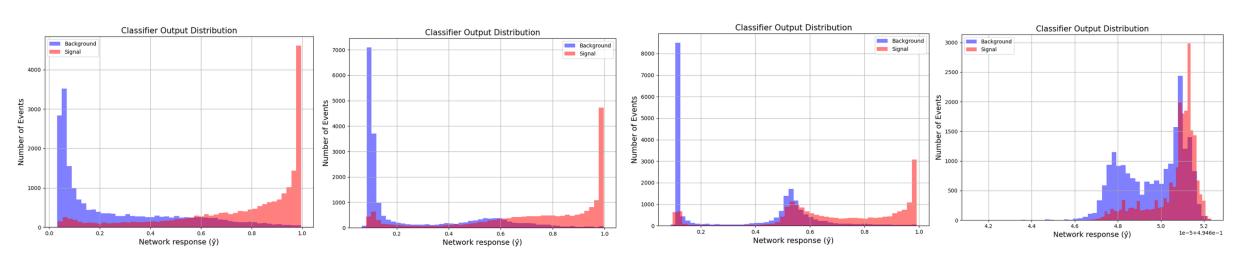
#	VBF DRmin y j
800	VBF Dphi Zy jj
100	VBF Dy j j
100	VBF N i
#	VBF Zepp
#	VBF eta j1
#	VBF eta j2
#	VBF_m_jj
#	VBF_mass_j1
#	VBF_mass_j2
#	VBF_pT_j1
#	VBF_pT_j2
#	VBF_pT_jj
#	VBF_pTt_Zy
#	Zy_Dphi_j1
#	ll_eta
#	11_pt
#	llg_angles_costheta_ginH
#	llg_angles_costheta_linZ
#	llg_deta_Zy
#	llg_dphi_Zy
#	llg_eta
#	llg_pt
#	ph_eta
#	ph_pt

**	D 0 14		
Variables	Definition		
M_{jj}	Di-jet mass		
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet		
pT_{j1}	lead-jet pT		
M_{j1}	lead-jet mass		
$\eta^{Zeppenfeld}$	$ \eta_{Z\gamma} - 0.5 * (\eta_{j1} + \eta_{j2}) $		
η_{j2}	sublead-jet eta		
pT_{jj}	Di-jet pT		
$\Delta\Phi_{Z\gamma,jj}$	Azimuthal angle between Zgamma and dijet system		
M_{j2}	sublead-jet mass		
$\frac{M_{j2}}{\Delta R_{\gamma or Z,j}^{min}}$	Minimum ΔR between one object of the Zgamma		
70.2,7	and jets		
pT_{j2}	sublead-jet pT		
η_{j1}	lead-jet eta		
$pT_{ll\gamma}$	$ll\gamma$ pT		
$\Delta\Phi_{Z\gamma,j1}$	Azimuthal angle between Zgamma and lead-jet		
pT_{γ}	photon pT		
pT_{ll}	11 pT		
N_j	Number of jets pT		
$\Delta\Phi_{Z,\gamma}$	Azimuthal angle between di-lepton system and photon		
$cos\theta(ll,\gamma)inZ$	$\cos\theta$ in Z rest system		
η_{ll}	eta of Z		
$\eta_{ll\gamma}$	eta of $ll\gamma$		
$cos\theta(ll,\gamma)inH$	$\cos\theta$ in Higgs rest system		
η_{γ}	eta of photon		
p_{Tt}	Zgamma p _T projected perpendicular to the Zgamma thrust axis		
$\Delta \eta_{Z,\gamma}$	Pseudo-rapidity separation of Z γ		

• Divide the dataset into 5 bins based on output. The bins are constructed to have an equal number of signal events. Calculate the significance of each bin and combine the significances of the bins.

Significance =
$$\sqrt{2\left[\left(N_S + N_B\right)\ln\left(1 + \frac{N_S}{N_B}\right) - N_S\right]}$$
, Total significance = $\sqrt{\sum_{i}^{n}\left(\text{Significance}_{i}\right)^2}$

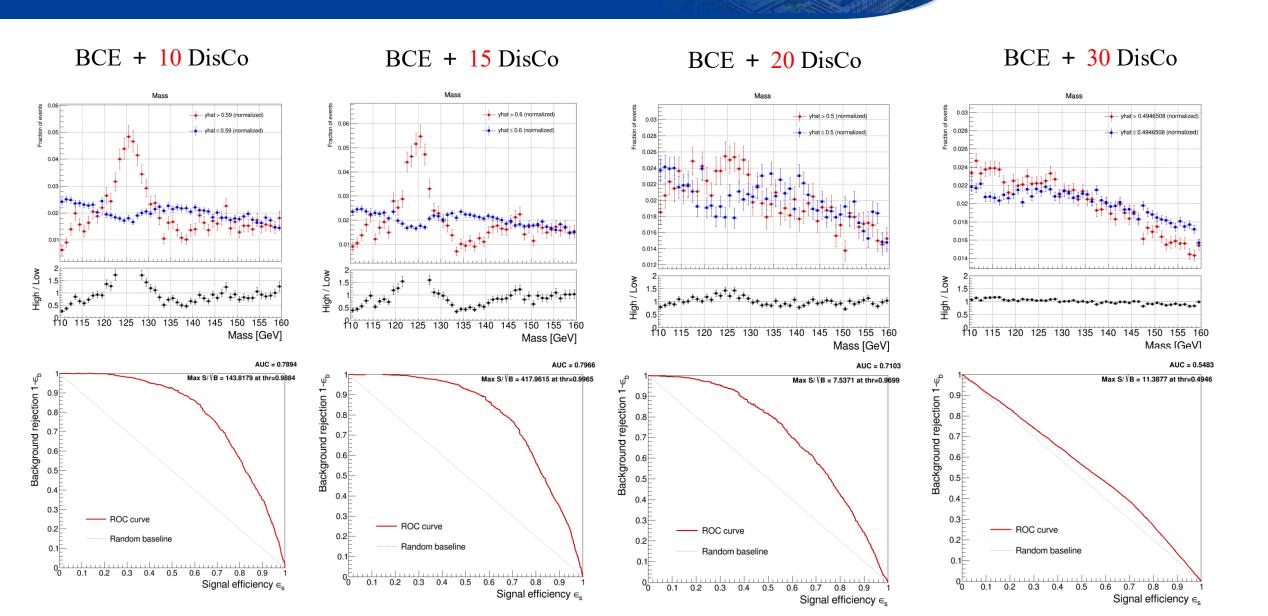
Result of validation set



BCE + 10 DisCo

BCE + 15 DisCo

BCE + 20 DisCo


BCE + 30 DisCo

Factor of disco	10	15	20	30
avg loss	0.500804	0.516626	0.585283	0.868690
Significance	13.923 +- 1.817	13.648 +-1.817	14.397 +- 2.479	9.428 +- 0.616

Result of validation set

