

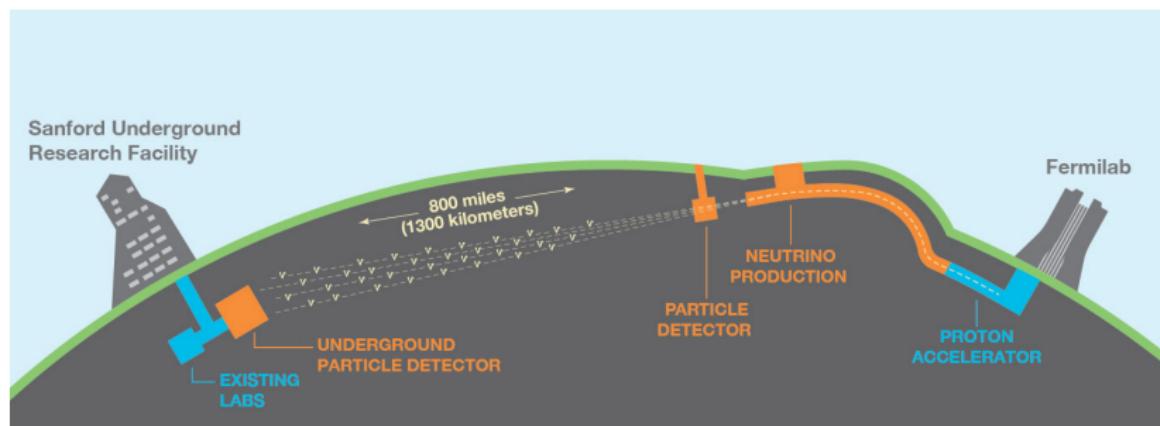
Complementarity between charged and neutral current events in the search for new neutrino interactions

Based on: arXiv:26XX.XXXXX

Julia Gehrlein, Jaime Hoefken Zink, Pedro A. N. Machado, **João Paulo Pinheiro**

Tsung Dao Lee Institute

December 26, 2025


李政道研究所
TSUNG-DAO LEE INSTITUTE

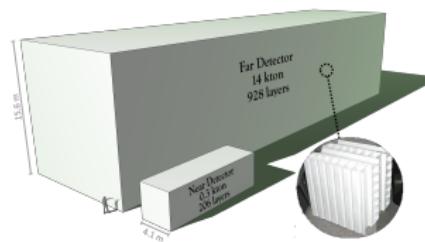
Summary

- 1** LBL Experiments: The Standard Picture
- 2** A New Perspective: NC as Signal
- 3** NSI Formalism
- 4** Analysis
- 5** Results
- 6** Conclusions
- 7** Backup slides

Long Baseline Neutrino Experiments

- Detection of neutrinos after macroscopic travel distances
- Accelerator experiments use artificial neutrino sources
- **Primary goal:** measure oscillation parameters via CC events

DUNE Collaboration (2020)


How Oscillation Experiments Work

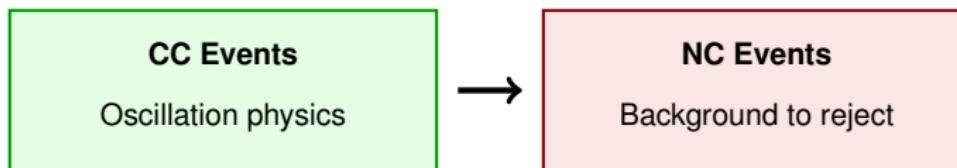
The Measurement:

- 1 Produce ν_μ beam at source
- 2 Neutrinos propagate through Earth
- 3 Detect flavor at Far Detector
- 4 Compare with Near Detector (no oscillation)

Main channels:

- $\nu_\mu \rightarrow \nu_\mu$ disappearance
- $\nu_\mu \rightarrow \nu_e$ appearance

Flavor identification requires Charged Current interactions!

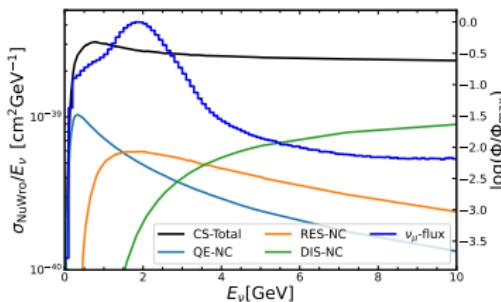

CC vs NC: The Traditional View

Charged Current (CC):

- $\nu_\ell + n \rightarrow \ell^- + p$
- Produces identifiable charged lepton
- **Flavor tagging:** μ^-, e^-, τ^-
- Good energy reconstruction
- ⇒ **The signal!**

Neutral Current (NC):

- $\nu + N \rightarrow \nu + X$
- No charged lepton produced
- **Flavor-blind:** all ν_α look the same
- Poor energy reconstruction
- ⇒ **A background!**


NC Events: A Dominant Background

Why NC is problematic:

- NC π^0 production mimics ν_e CC
- $\pi^0 \rightarrow \gamma\gamma$ looks like electron shower
- **Dominant background** for ν_e appearance
- Significant effort to reject/constrain

Current use of NC:

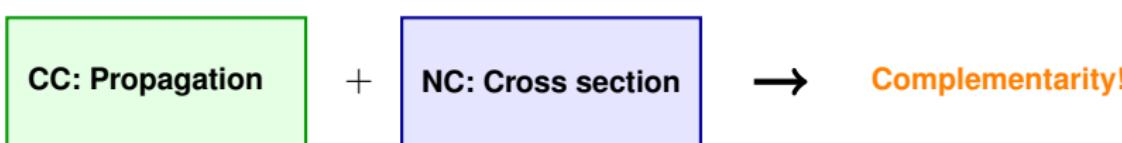
- Flux monitoring (flavor-independent)
- Systematic constraint via ND
- Otherwise... discarded

NC cross section and NOvA neutrino flux

Can we extract physics from this “background”?

Turning Background into Signal

The Insight:


NC events carry **different** information than CC events!

CC events probe NSI via:

- Matter effects during **propagation**
- Forward scattering ($q^2 \rightarrow 0$)
- Sensitive to specific combinations

NC events probe NSI via:

- **Cross section** modifications
- Finite momentum transfer
- Different parameter sensitivity!

Motivations for This Work

The Problem:

- CC analyses probe NSI through matter effects
- Sensitive almost **exclusively** to isoscalar: $\varepsilon^{uV} + \varepsilon^{dV}$
- Isovector combination $\varepsilon^{uV} - \varepsilon^{dV}$ suppressed by $\sim 100 \times$

Our Solution:

- Use NC events as **signal**, not background
- NC cross sections sensitive to **both** isoscalar and isovector
- First constraints on isovector NSI from accelerator neutrinos

CC + NC complementarity \rightarrow complete coverage of $(\varepsilon^{uV}, \varepsilon^{dV})$ plane

Non-Standard Interactions - The Lagrangian

The effective Lagrangian for NC-NSI with quarks:

$$\mathcal{L}_{\text{NSI}}^{\text{NC}} = -2\sqrt{2}G_F \sum_{f=u,d} \sum_{P=L,R} \varepsilon_{\alpha\beta}^{fp} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta) (\bar{f} \gamma_\mu P_P f)$$

Isospin Decomposition:

$$\begin{aligned} \varepsilon^{\text{isososc}} &\equiv \varepsilon^{uV} + \varepsilon^{dV} & (\text{isoscalar}) \\ \varepsilon^{\text{isovec}} &\equiv \varepsilon^{uV} - \varepsilon^{dV} & (\text{isovector}) \end{aligned}$$

Why vector NSI?

- Arise naturally in UV-complete models (Z' , leptoquarks)
- Axial NSI studied elsewhere (Abbaslu et al. 2024, 2025)
- Vector NSI affect both propagation AND scattering

CC Events: Sensitivity Through Propagation

The matter potential with NSI:

$$\varepsilon^{\text{prop}} = \varepsilon^{eV} + \frac{3(1 + Y_n)}{2} \varepsilon^{\text{isosc}} + \frac{1 - Y_n}{2} \varepsilon^{\text{isovec}}$$

where $Y_n \equiv N_n/N_e$ is the neutron-to-electron ratio.

For Earth matter ($Y_n \approx 1.05$):

$$\varepsilon_{\text{Earth}}^{\text{prop}} \approx \varepsilon^{eV} + 3.08 \varepsilon^{\text{isosc}} \textcolor{red}{- 0.025} \varepsilon^{\text{isovec}}$$

Isovector suppressed by factor ~ 100 !

CC oscillation analyses are **structurally blind** to $\varepsilon^{uV} - \varepsilon^{dV}$
This is geometric, not statistical — more data won't help!

NC Events: Sensitivity Through Cross Sections

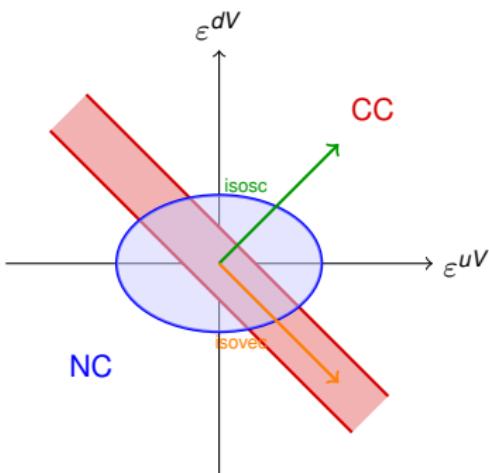
With NSI, the effective nucleon vector couplings become:

$$\tilde{g}_V^p = g_V^p + \frac{3\epsilon^{\text{isosoc}} + \epsilon^{\text{isovec}}}{2}$$
$$\tilde{g}_V^n = g_V^n + \frac{3\epsilon^{\text{isosoc}} - \epsilon^{\text{isovec}}}{2}$$

Main difference from propagation:

- NC cross sections depend on **both** isoscalar and isovector
- **Comparable weights** for both components
- No geometric suppression!

Observable	Isoscalar	Isovector
CC (matter effects)	✓	✗ (suppressed ~ 100)
CE ν NS	✓	✗ (for $N \approx Z$)
NC cross sections	✓	✓


The $(\varepsilon^{uV}, \varepsilon^{dV})$ Plane

CC constraints:

- Diagonal bands along $\varepsilon^{uV} + \varepsilon^{dV} = \text{const}$
- Cannot distinguish ε^{uV} from ε^{dV}
- Same limitation for CE ν NS

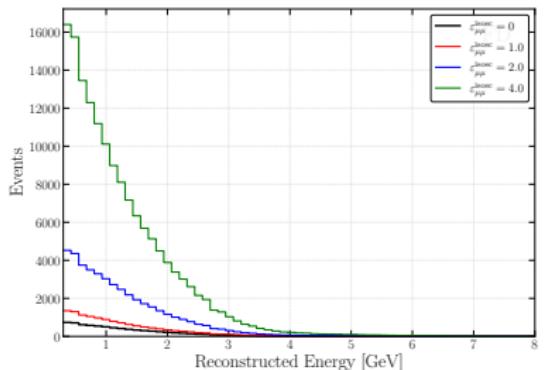
NC constraints:

- Probe both directions independently
- Break the CC degeneracy
- Access orthogonal parameter space

CC + NC = Complete coverage

Systematic Cancellation via FD/ND Ratio

The Challenge:


- Large uncertainties in NC cross sections (QE, RES, DIS)
- Flux normalization uncertainties

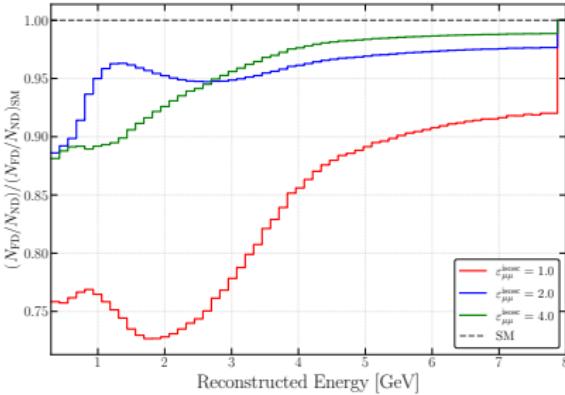
The Solution: FD/ND ratio

- ND and FD see **same** flux and cross sections
- Correlated systematics **cancel** in ratio
- Only FD-specific effects remain (\sim 10-15%)

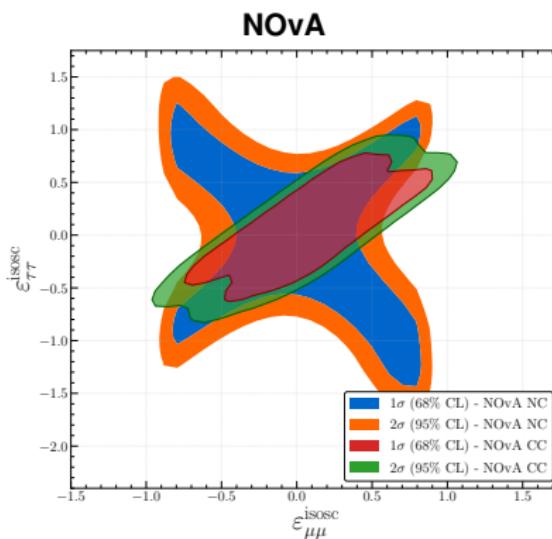
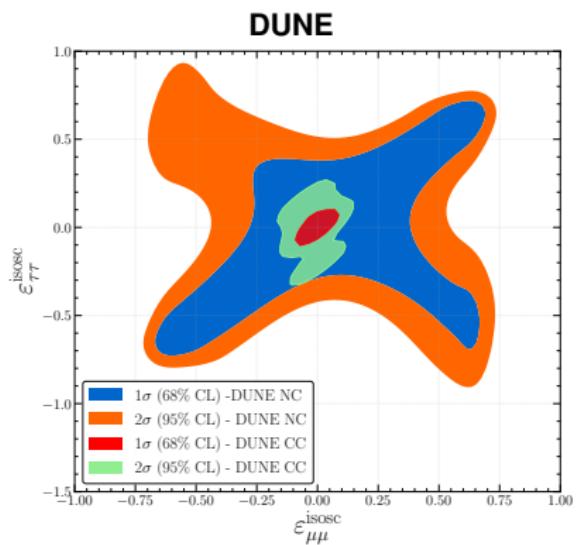
Parameter	NOvA	DUNE
Target	CH ₂	LAr
Baseline	810 km	1300 km
FD systematic	15%	10%

Effect of NSI on Event Distributions

- NC events grow **quadratically** with NSI
- Observable: FD/ND ratio
- For large ε : ratio $\rightarrow 1$
- BSM penalty prevents unphysical regions

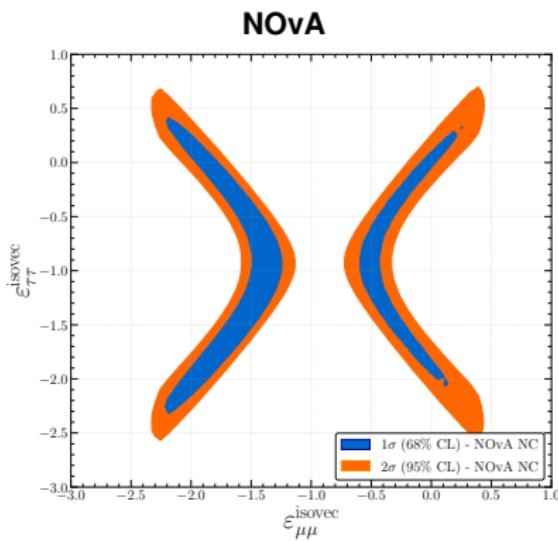
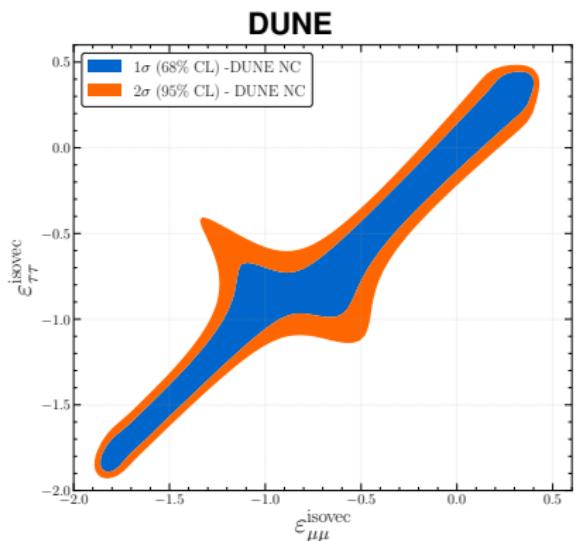

$$N_{FD} = 0.5|\nu_\mu\rangle + 0.5|\nu_\tau\rangle$$

$$N_{ND} = |\nu_\mu\rangle$$



$$\frac{N_{FD}}{N_{ND}} = 1, \text{ SM}$$

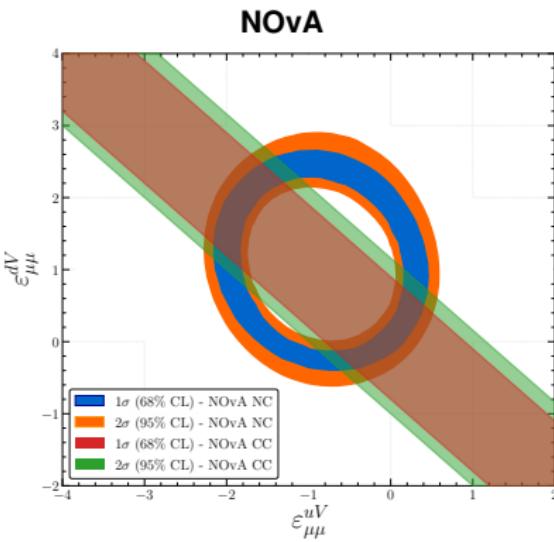
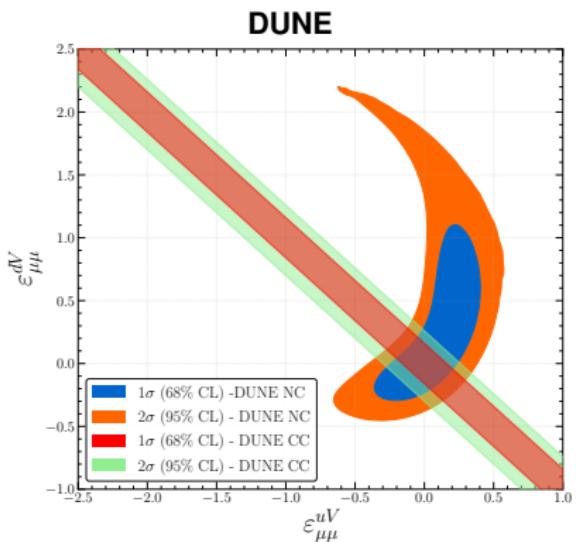
$$\frac{N_{FD}}{N_{ND}} < 1, \varepsilon_{\mu\mu}$$

$$\frac{N_{FD}}{N_{ND}} > 1, \varepsilon_{\tau\tau}$$

Isoscalar NSI Constraints

- **CC (red/green):** Three(Two)-island structure from oscillation degeneracies
- **NC (blue/orange):** Complementary sensitivity
- **DUNE:** CC dominates (longer baseline \rightarrow larger matter effects)
- **NOvA:** CC and NC comparable \rightarrow combination essential



Isovector NSI Constraints — NEW!

First constraints on isovector NSI from accelerator neutrinos!

- **NC events only** — CC has **zero** sensitivity here
- NOvA: Two disconnected regions (RES dominates at ~ 2 GeV)
- DUNE: Connected region (DIS contribution at higher energies)
- Genuinely new parameter space, inaccessible to oscillation analyses

Constraints in the $(\varepsilon_{\mu\mu}^{uV}, \varepsilon_{\mu\mu}^{dV})$ Plane

- **CC:** Diagonal bands \rightarrow blind direction along $\varepsilon^{uV} - \varepsilon^{dV}$
- **NC:** Elliptical regions \rightarrow probe both parameters independently
- **Geometric origin of complementarity clearly visible**
- Only CC+NC combination provides complete coverage

Conclusions

Conclusions

- **Traditional view:** NC events = background to CC oscillation analysis
- **New perspective:** NC events carry **complementary** NSI information
- **CC events** → isoscalar ($\varepsilon^{uV} + \varepsilon^{dV}$)
 - **Blind to isovector** (suppressed $\sim 100\times$ in Earth)
- **NC events** → isoscalar AND isovector
 - **No geometric suppression**
- **First constraints on isovector NSI** from LBL experiments
- **CC + NC** = complete ($\varepsilon^{uV}, \varepsilon^{dV}$) coverage
 - Parameter space hidden from oscillations + CE ν NS

Thank you!

Email:

joaopaulo.pinheiro@fqa.ub.edu

Why Focus on Vector NSI?

Phenomenological motivation:

- Axial NSI don't affect propagation (no matter effects)
- Axial NSI studied in Abbaslu et al. (2024, 2025)
- Our work is complementary

Theoretical motivation:

- Z' models → vector couplings to quarks and neutrinos
- Leptoquark models → vector NSI at tree level
- Scalar mediators → vector after Fierz rearrangement

NC Interaction Regimes

■ Quasi-Elastic (QE): $E_\nu < 2$ GeV

- $\nu + N \rightarrow \nu + N$
- Minimal energy transfer

■ Resonance (RES): $2 < E_\nu < 10$ GeV

- $\nu + N \rightarrow \nu + N^* \rightarrow \nu + N + \pi$
- Dominates at NOvA energies (~ 2 GeV)
- Isovector appears directly in $\Delta(1232)$ amplitude

■ Deep Inelastic (DIS): $E_\nu > 10$ GeV

- $\nu + N \rightarrow \nu + X$
- Important at DUNE higher energies