

Studying dark sector imprints in cosmology

Friday, 26 December 2025 16:30 (20 minutes)

Relativistic degrees of freedom or N_{eff} is one of the crucial cosmological parameters and is sensitive to extra radiation energy density at the time of neutrino decoupling. The precise measurement of N_{eff} at the time of CMB formation by Planck 2018 can be used to understand fundamental interactions and to shed light on beyond standard model (BSM) scenarios. In this talk I will explain how N_{eff} can probe light (MeV) freeze in dark matter models which contain additional neutrino injection at late time. We propose a scenario where a long lived scalar decays to a dark matter and active neutrinos after BBN. Despite the feeble coupling of DM the parameter space can be probed via N_{eff} . I will also talk about how N_{eff} at CMB can constrain light Z' gauge boson realized in generic BSM $U(1)_X$ scenarios.

Primary author: -, Sk Jeesun (Tsung Dao Lee Institute)

Presenter: -, Sk Jeesun (Tsung Dao Lee Institute)