

放射性测量中的统计学 Statistics in Radiation Measurement

周荣 Rong ZHOU 四川大学 核科学与工程技术学院 College of Nuclear Science & Engineering, SCU zhourong@scu.edu.cn

Outline

- Statistical distribution of nuclear decay and radioactivity counts
- Statistical error in radiation measurement
- Time distribution of radioactivity particles and signals

Statistical distribution of nuclear decay and radioactivity counts

Random Variable

- random variable X is
 - ➤ a real function whose domain is the probability space
 - >the set $\{X < x\}$ is an event for any real number x
 - ► the probability $P(X = +\infty) = 0$, and $P(X = -\infty) = 0$
- discrete random variable
- continuous random variable

Distribution Function D(x) and Probability Density Function p(x)

- $D(x) = P(X \le x)$
- Obviously,
 - $\triangleright D(x)$ is monotone increasing function.
 - $\triangleright p(x) \ge 0$

Expectation value, Variance Standard Deviation, Relative Deviation

- For continuous random variable X, its expectation value $E(X) = \int_{-\infty}^{+\infty} p(x)xdx$
- and its variance

$$\sigma^2 = E\{[X - E(X)]^2\} = E(X^2) - [E(X)]^2$$

standard deviation

$$\sigma = \sqrt{E\{[X - E(X)]^2\}} = \sqrt{E(X^2) - [E(X)]^2}$$

relative deviation

$$T = \frac{\sigma}{E(X)}$$

Exercise

 Please give the distribution function, expectation value, and variance of discrete random variable X. Suppose X may be x_i with probability $p(x_i)$.

Binomial Distribution

 Suppose event A occur with probability p in single test, the probability that event A occurs n times if repeating the test N times becomes (Let random variable X be the times that event A occurs):

$$P(X = n) = \frac{N!}{(N-n)!n!} p^{n} (1-p)^{N-n}$$

Exercise: calculate E(X) and σ of binomial distribution step by step.

Binomial Distribution (cont.)

$$E(X) = \sum_{n=0}^{N} n \cdot P(X = n)$$

$$= \sum_{n=0}^{N} n \cdot \frac{N!}{(N-n)! n!} p^{n} (1-p)^{N-n} = Np$$

$$\sigma^{2} = E(X^{2}) - [E(X)]^{2}$$

$$= \sum_{n=0}^{N} n^{2} \frac{N!}{(N-n)! n!} p^{n} (1-p)^{N-n} - (Np)^{2}$$

$$= N(N-1) p^{2} + Np - (Np)^{2}$$

$$= Np(1-p)$$

Example

- Suppose N radioactive nuclei the decay constant of which is λ s⁻¹, estimate the probability that n nuclei decay in t seconds.
 - ightharpoonup Let $\Delta t = t/k$, where $k \rightarrow \infty$, $\Delta t \rightarrow 0$.
 - \triangleright In a twinkling Δt , the probability that a nucleus decay is $\lambda \Delta t$, the probability that not decay is $1 - \lambda \Delta t$.
 - \triangleright In time t, the probability that a nucleus do not decay is $(1 - \lambda \Delta t)^k$

$$\lim_{k \to \infty} (1 - \lambda \Delta t)^k = \lim_{k \to \infty} (1 - \lambda \frac{t}{k})^k = e^{-\lambda t}$$

Example (cont.)

- \triangleright so, in time t, the probability that a nucleus decay is $1 - e^{-\lambda t}$.
- Let random variable X be the number of

decayed nuclei in time
$$t$$
, then
$$P(X = n) = \frac{N!}{(N-n)!n!} (1 - e^{-\lambda t})^n (e^{-\lambda t})^{N-n}$$

$$E(X) = N(1 - e^{-\lambda t})$$

$$\sigma^2 = N(1 - e^{-\lambda t})e^{-\lambda t}$$

Poisson Distribution

For binomial distribution

$$P(X = n) = \frac{N!}{(N-n)! \, n!} \, p^n (1-p)^{N-n}$$

• Let m=Np, when $N\to\infty$, p<<1时,

$$\lim_{N \to \infty} P(X = n) = \frac{N!}{(N - n)! n!} (\frac{m}{N})^n (1 - \frac{m}{N})^{N - n}$$

$$= \lim_{N \to \infty} \frac{N!}{(N - n)! N^n} \frac{m^n}{n!} (1 - \frac{m}{N})^N (1 - \frac{m}{N})^{-n}$$

$$= \lim_{N \to \infty} \left[(1 - \frac{1}{N})(1 - \frac{2}{N}) \cdots (1 - \frac{n-1}{N}) \right] \frac{m^n}{n!} (1 - \frac{m}{N})^N (1 - \frac{m}{N})^{-n}$$

 $=\frac{m^n}{n!}e^{-m}$ Poisson distribution

Poisson Distribution (cont.)

$$E(X) = \sum_{n=0}^{\infty} n \cdot P(X = n) = \sum_{n=0}^{\infty} n \cdot \frac{m^{n}}{n!} e^{-m}$$

$$= m \sum_{n=1}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} = m$$

$$\sigma^{2} = E(X^{2}) - [E(X)]^{2} = \sum_{n=0}^{\infty} n^{2} \cdot \frac{m^{n}}{n!} e^{-m} - m^{2}$$

$$= m \sum_{n=1}^{\infty} (n-1) \cdot \frac{m^{n-1}}{(n-1)!} e^{-m} + m \sum_{n=1}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} - m^{2}$$

$$= m$$

Example

• Suppose N ($N \rightarrow \infty$) radioactive nuclei the decay constant of which is λ s⁻¹, estimate the probability that n nuclei decay in t seconds.

$$p = 1 - e^{-\lambda t}, m = Np, P(X = n) = \frac{m^n}{n!} e^{-m}$$

$$E(X) = m = Np = N(1 - e^{-\lambda t})$$

$$\sigma^2 = m = Np = N(1 - e^{-\lambda t})$$

14

Binomial Distribution VS Poisson Distribution

	Binomial Distribution	Poisson Distribution
P(X=n)	$\frac{N!}{(N-n)!n!} (1 - e^{-\lambda t})^n (e^{-\lambda t})^{N-n}$	$\frac{m^n}{n!}e^{-m}, m=N(1-e^{-\lambda t})$
E(X)	$N(1-e^{-\lambda t})$	$N(1-e^{-\lambda t})$
σ^2	$N(1-e^{-\lambda t})e^{-\lambda t}$	$N(1-e^{-\lambda t})$
200		

Exercise

- There is a source containing N radioactive nuclei, the decay constant of which is λ s⁻¹,
 >estimate its activity A,
 - \succ and calculate the expectation number of decayed nuclei in time t from activity A.
 - compare the result with that from Poisson distribution, and explain the difference.

Exercise (solution)

- $A = \lambda N$
- according to the definition of activity, the expectation number of decayed nuclei is $At = \lambda Nt$
- from Poisson distribution, $E(X)=N(1-e^{-\lambda t})$
- notice that when λt is very small, $1 e^{-\lambda t} \approx \lambda t$
- so, E(X) ≈ λNt, which is the same as the result from activity.

Gaussian Distribution

 Random variable X follow Gaussian distribution if its probability density function becomes

$$p(x) = \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

• As we all know, its expectation is m and variance σ .

18

From Poisson to Gaussian

- Suppose a random variable X following a Poisson distribution with parameter m, X would follow a Gaussian distribution when m>>1.
- Usually we can use Gaussian distribution approximately instead of Poisson distribution when m≥20

Transforming and Combining Random Variable

- Linear transformations of random variable
 F(cX) = cE(X)
 Fo²(cX) = c²σ²(X)
- Sum and difference of independent random variable

$$E(X \pm Y) = E(X) \pm E(Y)$$

$$\sigma^{2}(X \pm Y) = \sigma^{2}(X) + \sigma^{2}(Y)$$

Product of independent random variable
 ► E(XY) = E(X)E(Y)

20

Transforming and Combining Random Variable

- the sum of several independent Poisson random variable also follows Poisson distribution.
- the sum of several independent Gaussian random variable also follows Gaussian distribution

21

Cascade Random Variable

- Let X be a random variable for test condition A, and Y for test condition B. X, Y are mutually independent.
- take a test under condition A, and obtain a possible value x of X
- take tests under condition B x times, and obtain x possible values $y_1, y_2, ..., y_x$.
- so $z=y_1+y_2+...+y_x$ is a possible value of random variable Z. Z is cascade random variable of X and Y.

22

 For cascade random variable Z, the following equation could be proved:

$$E(Z) = E(X)E(Y)$$

$$\sigma^{2}(Z) = [E(Y)]^{2} \sigma^{2}(X) + E(X)\sigma^{2}(Y)$$

$$v^{2}(Z) = \frac{\sigma^{2}(Z)}{[E(Z)]^{2}} = v^{2}(X) + \frac{1}{E(X)}v^{2}(Y)$$

when E(X) is comparatively large, the contribution of $v^2(Y)$ for $v^2(Z)$ could be ignored.

Characteristic of Cascade Random Variable

- Cascade random variable Z of X and Y is also Bernoulli random variable, if X and Y are both Bernoulli random variable.
 - $\triangleright p_z = p_z p_y$
- Cascade random variable Z of X and Y also follows Poisson distribution, if X follows Poisson distribution and Y follows Bernoulli distribution.
 - $> m_z = m_x p_y$

24

Exercise

- P INTER
- A source contain two kinds of radioactive nuclei: 137 Cs with activity 1000 Bq and 60 Co with activity 10000 Bq. Now a detector with efficiency of 50% is used to record the γ rays emitted by the source 1 minutes.
 - Estimate the expectation record result and its statistic error.
 - igive the distribution of the record result of several repeating experiments.

THE STATE OF THE S

Statistical error in radiation measurement

26

statistical error of radiation measurement data

- Usually, particle count follows Poisson distribution, so $\sigma^2 = m$
- When *m* is comparatively large,

$$\sigma^2 = m \approx \overline{n} \approx n_i$$

- $\overline{n} = \sum_{i=1}^k n_i / k$, where n_i is the result of the *i*-th measuring
- · sample standard deviation:

$$\sigma_s = \sqrt{\frac{1}{k-1} \sum_{i=1}^k (n_i - \overline{n})^2}$$

 Statistical error is the main error in radiation measurement. Considering only statistical error, the result of a single measuring could be expressed as:

$$n_i \pm \sigma = n_i \pm \sqrt{n_i}$$

- It means the result of any single measuring in same condition would be in $(n_i \sqrt{n_i}, n_i + \sqrt{n_i})$ with probability of 68.3%.
- Its relative deviation is

$$v = \frac{\sigma}{m} = \frac{\sqrt{m}}{m} = \frac{1}{\sqrt{m}} \approx \frac{1}{\sqrt{n_i}}$$

The larger the count is, the smaller the relative error is!

Error Propagation

- Independent random variable $X_1, X_2, ..., X_n$
- with standard deviation $\sigma_1, \sigma_2, ..., \sigma_n$
- $Y = f(X_1, X_2, ..., X_n)$
- · then

$$\sigma^{2}(Y) = \left(\frac{\partial Y}{\partial X_{1}}\right)^{2} \sigma_{1}^{2} + \left(\frac{\partial Y}{\partial X_{2}}\right)^{2} \sigma_{2}^{2} + \dots + \left(\frac{\partial Y}{\partial X_{n}}\right)^{2} \sigma_{n}^{2}$$

Example

	Standard Deviation	Relative Deviation
$Y=aX_1 \pm bX_2$	$\sqrt{\left(a\sigma_{1}\right)^{2}+\left(b\sigma_{2}\right)^{2}}$	$\frac{\sqrt{(a\sigma_1)^2 + (b\sigma_2)^2}}{ax_1 \pm bx_2}$
$Y = X_1 * X_2$	$x_1 x_2 \sqrt{(\frac{\sigma_1}{x_1})^2 + (\frac{\sigma_2}{x_2})^2}$	$\sqrt{\left(\frac{\sigma_1}{x_1}\right)^2 + \left(\frac{\sigma_2}{x_2}\right)^2}$
$Y=X_1/X_2$	$\frac{x_1}{x_2}\sqrt{\left(\frac{\sigma_1}{x_1}\right)^2 + \left(\frac{\sigma_2}{x_2}\right)^2}$	$\sqrt{\left(\frac{\sigma_1}{x_1}\right)^2 + \left(\frac{\sigma_2}{x_2}\right)^2}$

Statistical Error of Count Rate

• N counts in time t, so count rate n=N/t.

$$\sigma(n) = \sqrt{\frac{\sigma^2(N)}{t^2}} = \sqrt{\frac{N}{t^2}} = \sqrt{\frac{n}{t}} \qquad v(n) = \frac{\sigma(n)}{n} = \frac{\sqrt{\frac{n}{t}}}{n} = \sqrt{\frac{1}{nt}} = \sqrt{\frac{1}{N}}$$

count rate result: $n \pm \frac{n}{\sqrt{N}}$

Relative deviation of count rate 1) relates to only total counts N; 2) equals that of total counts N.

Statistical Error of Average Counts for multiple measures

- k count results $N_1, N_2, ..., N_k$ from k times measure, each in time t.
- Mean counts: $\overline{N} = \frac{1}{k} \sum_{i=1}^{k} N_i$
- Variance: $\sigma^2(\overline{N}) = \frac{1}{k^2} \sum_{i=1}^k \sigma^2(N_i) = \frac{1}{k^2} \sum_{i=1}^k N_i = \frac{\overline{N}}{k}$
- relative deviation: $v(\overline{N}) = \frac{\sigma(\overline{N})}{\overline{N}} = \frac{1}{\sqrt{k\overline{N}}} = \frac{1}{\sqrt{\sum_{i} N_{i}}}$

• average counts: $\overline{N} \pm \sqrt{\overline{N}/k}$

Exercise

· For the same condition on last slides, calculate the average count rate and its standard deviation as well as relative deviation.

A)measuring once in time kt B) measuring k times and each in time twould have the same relative deviation as long as the total counts are the same for two kinds of measurement.

Error of Net Count Rate (Background Subtracted)

- measuring background: N_b in t_b
- measuring sample: N_s in t_s
- net count rate: $n_0 = N_s/t_s N_b/t_b$
- standard deviation:

$$\sigma(n_0) = \sqrt{\frac{N_s}{t_s^2} + \frac{N_b}{t_b^2}} = \sqrt{\frac{n_s}{t_s} + \frac{n_b}{t_b}}$$

result:
$$n_0 \pm \sigma(n_0) = (n_s - n_b) \left[1 \pm \frac{1}{n_s - n_b} \sqrt{\frac{n_s}{t_s} + \frac{n_b}{t_b}} \right]$$

Combination of Measurement Result with Unequal Precision

• Considering *k* independent measuring, the *i*-th counts is N_i in time t_i .

$$\overline{n} = \frac{\sum_{i} W_{i} n_{i}}{\sum_{i} W_{i}} \quad W_{i} = \frac{\lambda^{2}}{\sigma_{n}^{2}} \quad n_{i} = \frac{N_{i}}{t_{i}} \quad \sigma_{n}^{2} = \frac{n_{i}}{t_{i}} \quad \lambda : \text{any contant}$$

• We can using $\lambda^2 = \overline{n} \approx n_i$, then $W_i = t_i$.

$$\overline{n} = \frac{\sum_{i} t_{i} n_{i}}{\sum_{i} t_{i}} = \frac{\sum_{i} N_{i}}{\sum_{i} t_{i}}$$

Combination of Measurement Result with Unequal Precision (cont.)

$$\begin{split} \sigma(\overline{n}) &= \sqrt{\frac{\sum_{i} \sigma^{2}(N_{i})}{\left(\sum_{i} t_{i}\right)^{2}}} = \sqrt{\frac{\sum_{i} N_{i}}{\left(\sum_{i} t_{i}\right)^{2}}} = \sqrt{\frac{\overline{n}}{\sum_{i} t_{i}}} \\ \nu(\overline{n}) &= \frac{\sigma(\overline{n})}{\overline{n}} = \sqrt{\frac{1}{\overline{n} \sum_{i} t_{i}}} = \sqrt{\frac{1}{\sum_{i} N_{i}}} \end{split}$$

result:
$$\overline{n} \pm \sqrt{\frac{\overline{n}}{\sum_{i} t_i}}$$

Optimization of Measuring time and conditions

- measuring background: $N_{\rm b}$ in $t_{\rm b}$
- measuring sample: $N_{\rm s}$ in $t_{\rm s}$
- net count rate: $n_0 = N_s/t_s N_b/t_b$
- standard deviation:

$$\sigma(n_0) = \sqrt{\frac{N_s}{t_s^2} + \frac{N_b}{t_b^2}} = \sqrt{\frac{n_s}{t_s} + \frac{n_b}{t_b}}$$

Find the best t_s and t_b which lead to minimum $\sigma(n_0)$ when $T=t_s+t_b$ is fixed.

Solution

• Let

$$\frac{d}{dt_s} \left(\frac{n_s}{t_s} + \frac{n_b}{T - t_s} \right) = 0 \Rightarrow \frac{t_b}{t_s} = \sqrt{\frac{n_b}{n_s}}$$

$$t_b = \frac{\sqrt{n_b}}{\sqrt{n_s} + \sqrt{n_b}} T \qquad t_s = \frac{\sqrt{n_s}}{\sqrt{n_s} + \sqrt{n_b}} T$$

Time Distribution of Radiation Particles and Signals

39

Time Interval of Successive Nuclear Event

- A source of activity m emits a γ photon per nucleus decay. Give the distribution which the time interval T of successive γ emission follows.
- in time t, the numbers of γ photons follows Poisson distribution with parameter mt:

$$P_N(N=n) = \frac{(mt)^n}{n!} e^{-mt}$$

 T<t means at least one γ photon was emitted in time t.

 $P_T(T < t) = \sum_{k=1}^{\infty} P_N(N = k) = 1 - P_N(N = 0) = 1 - e^{-mt}$

$$p_T(t) = \frac{d}{dt} P_T(T < t) = me^{-mt} (t > 0)$$

The time interval of successive nuclear events follows exponential distribution.

$$E(t) = \frac{1}{m}, \sigma^2(t) = \frac{1}{m^2}$$

Question

 A detector has dead time τ. if the detector recorded n counts, estimate the counting loss.

Summary

- Nuclear events number follows Poisson distribution, And its time interval follows exponential distribution.
- For a Poisson distribution with parameter *m*, its expectation and variance are both *m*.
- The larger the total counts are recorded, the less error the result contains.

Homework • P25: 1,2,3,4,5,6,10