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1+1 dimensional quantum 
electrodynamics on the lattice 



Lagrangian  

 first studied by Schwinger for 

Invariant under gauge transformation

 are Dirac matrices in 2-dim.

For one massless fermion ( ), EOM  
 
 
 
                                                        

μ, ν = 0,1, N = 1, m = 0

γμ

N = 1,m = 0

QED in two dimensions

Fμν = ∂μAν − ∂νAμℒ = −
1
4

FμνFμν +
N

∑
j=1

ψ̄j[γμ(i∂μ − eAμ) − mj]ψj ,

Schwinger, PRD 1962

{γμ, γν} = 2gμν, {γ5, γμ} = 0, e . g .

iγμDμψ = 0, Dμ = ∂μ + ieAμ

∂μFμν = jν, jν = eψ̄γνψ, with ∂ν jν = 0

ψ (x) → eiΛ(x)ψ (x), Aμ(x) → Aμ(x) −
1
e

∂μΛ(x)

γ0 = (0 −i
i 0 ), γ1 = (0 i

i 0), γ5 = (1 0
0 −1)



In two dimensions, we have (  is 2-dim. antisymmetric tensor)

Axial vector and vector current are related to each other

At classical level

At quantum level (anomaly)

The theory contains a free massive boson (fermion-antifermion 
bound state), trivial higher states consisting of  free Schwinger 
bosons
In the massive model, these higher states turn into -boson bound 
states

εμν

n

n

QED in two dimensions

γμγ5 = − εμνγν

Jμ
5 = ψ̄γμγ5ψ = − εμνψ̄γνψ = − εμνJν

∂μJμ
5 = 0

∂μJμ
5 =

e2

2π
εμνFμν ⇒ ( □ + m̄2)Jμ = 0, m̄ = e/ π



Green’s function is given by

Switch to imaginary time

We then have

Minkowskian Green’s functions can be reconstructed from their 
Euclidean counterpart by analytic continuation through Wick 
rotation
Euclidean formulation of QFTs can be conveniently realized on a 
discrete lattice

Path integral formalism

t → − itE, exp[iS] → exp[−SE]

⟨0 |T{Ô1(x1)Ô2(x2)…} |0⟩ =
1

∫ d[A, ψ]eiS ∫ d[A, ψ]O1(x1)O2(x2)…eiS, S = ∫ d4xℒ

⟨0 |T{Ô1(x1)Ô2(x2)…} |0⟩E =
1
Z ∫ d[A, ψ]O1(x1)O2(x2)…e−SE, SE = i∫ d4xℒE

Z = ∫ d[A, ψ]e−SE



We need to discretize the Lagrangian
Discretized derivative

To maintain gauge invariance, one needs the parallel transporter

The smallest of which defines the link variable on the lattice  
 
which satisfies

All parallel transporters can be constructed from links, for 
example

Lattice action

∂μψ (x) → [ψ (x + aeμ) − ψ (x − aeμ)]/(2a)

U(x − aeμ, x + aeμ) = eig ∫x−aeμ
x+aeμ Aμ(z)dzμ

U(x + aeμ, x) ≡ Ux,μ

U(x, x + aeμ) = U−1(x + aeμ, x) = U−1
x,μ = U*x,μ

U(x − aeμ, x + aeμ) = U(x − aeμ, x)U(x, x + aeμ)



Bosonic part can be constructed from the smallest closed loop 
formed by link variables, called plaquette

Naive lattice fermion

With the free fermion propagator

Lattice action
S = i∫ d4x[ℒg + ℒf ] = Sg + Sf

Up ≡ U(x, x + aeν)U(x + aeν, x + aeμ + aeν)
× U(x + aeμ + aeν, x + aeμ)U(x + aeμ, x)

Sg[U ] = β∑
p

[1 −
1
2

(Up + U†
p)], β =

1
g2a2

Dμ = [Ux,μψ (x + aeμ) − U*x−aeμ,μψ (x − aeμ)]/(2a)

Qn(x, y) = mδ(x − y) +
1

2a

2

∑
μ=1

σμ[Ux,μδ(x + aeμ − y) − U*x−aeμ,μδ(x − aeμ − y)]

⟨ψ†(−p)ψ (p)⟩ = [ i
a ∑

μ

σμsin(pμa) + m]−1

Fermion doubling problem:
For m=0,

4 poles: 
 vs

1 pole:  in continuum

p1 = (0,0), p2 = (π /a,0)
p3 = (0,π /a), p4 = (π /a, π /a)

p = (0,0)



Add extra terms to kill doublers (example: Wilson fermion)

Price to get rid of doublers (Nielsen-Ninomiya No-Go theorem), 
one has to abandon one of

Unitarity
Locality
Chiral symmetry

To summarize, on a discrete lattice  

Lattice action
S = i∫ d4x[ℒg + ℒf ] = Sg + Sf

Qn(x, y) = mδ(x − y) +
1

2a

2

∑
μ=1

σμ[Ux,μδ(x + aeμ − y) − U*x−aeμ,μδ(x − aeμ − y)]

−
r
2

2

∑
μ=1

[Ux,μδ(x + aeμ − y) − U*x−aeμ,μδ(x − aeμ − y)]



Integrate out the fermionic degrees of freedom

Fermion determinant is computationally more expensive 
A simple way to deal with it: quenched approximation

Fermion pair creation and annihilation processes ignored 
Such fermion loops are expected to have small effects
Significant simplification in numerical simulations, several orders 
of magnitude faster

Lattice action
Sg[U ] =

1
g2 ∑

p
[1 −

1
2

(Up + U†
p)] + ψ̄Q(U )ψ = Sl

g[U ] + Sl
f[U, ψ]

Zl = ∫ d[U, ψ]e−Sl = ∫ d[U ]e−Sl
g det[Q(U )]

det[Q(U )] = 1



Hadron mass spectrum can be studied from correlation function of 
an operator with the same quantum number of a given hadron

Construct operators with suitable quantum numbers 
(interpolators)
Compute the two-point correlation function
Study the large time limit of the correlation function

Consider 

Insert a complete set of energy eigenstates, it becomes

Mass spectrum

C(p, t) = ∑
x

eipx⟨O(x, t)O†(0,0)⟩

∑
x

∑
n

eipx⟨0 |O(x, t) |n⟩⟨n |O†(0,0) |0⟩

= ∑
x

∑
n

eipx⟨0 |O(x,0)e−Ht |n⟩⟨n |O†(0,0) |0⟩

= ∑
x

∑
n

eipx⟨0 |O(x,0) |n⟩⟨n |O†(0,0) |0⟩e−Ent



For finite lattice size, the values of  are discrete
For simplicity, we project to zero momentum 

In large time limit, the exponential fall-off of the correlation 
function gives the ground state energy
One can define the effective mass as

En
p = 0

Mass spectrum

C(0,t) = ∑
n

cne−Ent, cn = ∑
x

⟨0 |O(x,0) |n⟩⟨n |O†(0,0) |0⟩

ameff = − ln
C(0,t)

C(0,t − 1)

It reaches a plateau at large  
time separations as the ground  
state exponential dominates in  
the correlation function



For finite lattice size, the values of  are discrete
For simplicity, we project to zero momentum 

In large time limit, the exponential fall-off of the correlation 
function gives the ground state energy
If one chooses periodic boundary condition, then

En
p = 0

Mass spectrum

C(0,t) = ∑
n

cne−Ent, cn = ∑
x

⟨0 |O(x,0) |n⟩⟨n |O†(0,0) |0⟩

C(0,t) = ∑
n

cn[e−Ent + e−En(T−t)]



Two-point function calculation (for )  

 is the quark propagator, and computed as the inverse of the 
fermion matrix

Taking the meson interpolator with  as an example 

OΓ(x) = ψ̄ (x)Γψ (x)

S(x, y)

Γ = γ5

Mass spectrum

QS(x, y) = δ(x, y)



A Wilson loop is a loop formed by link variables, the simplest 
example is a plaquette
For a Wilson loop which has length m in spatial direction and n in 
temporal direction

In the continuum limit, it becomes

C is a rectangular contour with  and 
It represents the probability amplitude of creating an infinitely 
heavy (static) fermion-antifermion pair at  (with separation 
) and annihilating at time 

r = ma t = na

t0 = 0
r t

Wilson loop

W(m, n) = ⟨U(x, x + maeν)U(x + maeν, x + naeμ + maeν)
× U(x + naeμ + maeν, x + naeμ)U(x + naeμ, x)⟩

W(m, n) → W(r, t) = ⟨eie∮C dxμAμ⟩



For large , one expects

 is the static potential, it has a linear behavior with the 
distance as the Coulomb potential in D spatial dimensions

It can be extracted by computing 

t

V(r)

Wilson loop

W(r, t → ∞) → e−V(r)t = e−V(r)na

V(r) → r2−D

aV(r) = ln
W(r, t − 1)

W(r, t)
t→∞


