1＋1 dimensional quantum electrodynamics on the lattice

张建辉（北京师范大学）

第四届格点数值量子场论训练营
2021．08．03

QED in two dimensions

- Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\sum_{j=1}^{N} \bar{\psi}_{j}\left[\gamma^{\mu}\left(i \partial_{\mu}-e A_{\mu}\right)-m_{j}\right] \psi_{j}, \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

- $\mu, \nu=0,1$, first studied by Schwinger for $N=1, m=0$ Schwinger, PRD 1962
- Invariant under gauge transformation

$$
\psi(x) \rightarrow e^{i \Lambda(x)} \psi(x), \quad A_{\mu}(x) \rightarrow A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \Lambda(x)
$$

- γ^{μ} are Dirac matrices in 2-dim.
$\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu},\left\{\gamma_{5}, \gamma^{\mu}\right\}=0$, e.g. $\gamma^{0}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right), \gamma^{5}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- For one massless fermion $(N=1, m=0)$, EOM

$$
\begin{aligned}
i \gamma^{\mu} D_{\mu} \psi & =0, \quad D_{\mu}=\partial_{\mu}+i e A_{\mu} \\
\partial_{\mu} F^{\mu \nu} & =j^{\nu}, \quad j^{\nu}=e \bar{\psi} \gamma^{\nu} \psi, \quad \text { with } \partial_{\nu} j^{\nu}=0
\end{aligned}
$$

QED in two dimensions

- In two dimensions, we have ($\varepsilon^{\mu \nu}$ is 2-dim. antisymmetric tensor)

$$
\gamma^{\mu} \gamma_{5}=-\varepsilon^{\mu \nu} \gamma_{\nu}
$$

- Axial vector and vector current are related to each other

$$
J_{5}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma_{5} \psi=-\varepsilon^{\mu \nu} \bar{\psi} \gamma_{\nu} \psi=-\varepsilon^{\mu \nu} J_{\nu}
$$

- At classical level

$$
\partial_{\mu} J_{5}^{\mu}=0
$$

- At quantum level (anomaly)

$$
\partial_{\mu} J_{5}^{\mu}=\frac{e^{2}}{2 \pi} \varepsilon^{\mu \nu} F_{\mu \nu} \Rightarrow\left(\square+\bar{m}^{2}\right) J^{\mu}=0, \bar{m}=e / \sqrt{\pi}
$$

- The theory contains a free massive boson (fermion-antifermion bound state), trivial higher states consisting of n free Schwinger bosons
- In the massive model, these higher states turn into n-boson bound states

Path integral formalism

Green's function is given by
$\langle 0| T\left\{\hat{O}_{1}\left(x_{1}\right) \hat{O}_{2}\left(x_{2}\right) \ldots\right\}|0\rangle=\frac{1}{\int d[A, \psi] e^{i S}} \int d[A, \psi] O_{1}\left(x_{1}\right) O_{2}\left(x_{2}\right) \ldots e^{i S}, \quad S=\int d^{4} x \mathscr{L}$

- Switch to imaginary time

$$
t \rightarrow-i t_{E}, \quad \exp [i S] \rightarrow \exp \left[-S_{E}\right]
$$

- We then have
$\langle 0| T\left\{\hat{O}_{1}\left(x_{1}\right) \hat{O}_{2}\left(x_{2}\right) \ldots\right\}|0\rangle_{E}=\frac{1}{Z} \int d[A, \psi] O_{1}\left(x_{1}\right) O_{2}\left(x_{2}\right) \ldots e^{-S_{E}}, \quad S_{E}=i \int d^{4} x \mathscr{L}_{E}$

$$
Z=\int d[A, \psi] e^{-S_{E}}
$$

- Minkowskian Green's functions can be reconstructed from their Euclidean counterpart by analytic continuation through Wick rotation
- Euclidean formulation of QFTs can be conveniently realized on a discrete lattice

Lattice action

- We need to discretize the Lagrangian
\bigcirc Discretized derivative

$$
\partial_{\mu} \psi(x) \rightarrow\left[\psi\left(x+a e_{\mu}\right)-\psi\left(x-a e_{\mu}\right)\right] /(2 a)
$$

- To maintain gauge invariance, one needs the parallel transporter

$$
U\left(x-a e_{\mu}, x+a e_{\mu}\right)=e^{i g g_{x+a e_{\mu}}^{\int-2 e_{\mu}}} A_{\mu}(z) d z_{\mu}
$$

- The smallest of which defines the link variable on the lattice

$$
U\left(x+a e_{\mu}, x\right) \equiv U_{x, \mu}
$$

which satisfies

$$
U\left(x, x+a e_{\mu}\right)=U^{-1}\left(x+a e_{\mu}, x\right)=U_{x, \mu}^{-1}=U_{x, \mu}^{*}
$$

All parallel transporters can be constructed from links, for example

$$
U\left(x-a e_{\mu}, x+a e_{\mu}\right)=U\left(x-a e_{\mu}, x\right) U\left(x, x+a e_{\mu}\right)
$$

Lattice action

$$
S=i \int d^{4} x\left[\mathscr{L}_{g}+\mathscr{L}_{f}\right]=S_{g}+S_{f}
$$

- Bosonic part can be constructed from the smallest closed loop formed by link variables, called plaquette

$$
\begin{aligned}
& U_{p} \equiv U\left(x, x+a e_{\nu}\right) U\left(x+a e_{\nu}, x+a e_{\mu}+a e_{\nu}\right) \\
& \times U\left(x+a e_{\mu}+a e_{\nu}, x+a e_{\mu}\right) U\left(x+a e_{\mu}, x\right) \\
& S_{g}[U]=\beta \sum_{p}\left[1-\frac{1}{2}\left(U_{p}+U_{p}^{\dagger}\right)\right], \quad \beta=\frac{1}{g^{2} a^{2}}
\end{aligned}
$$

- Naive lattice fermion

$$
\begin{gathered}
D_{\mu}=\left[U_{x, \mu} \psi\left(x+a e_{\mu}\right)-U_{x-a e_{\mu} \mu}^{*} \psi\left(x-a e_{\mu}\right)\right] /(2 a) \\
Q_{n}(x, y)=m \delta(x-y)+\frac{1}{2 a} \sum_{\mu=1}^{2} \sigma_{\mu}\left[U_{x, \mu} \delta\left(x+a e_{\mu}-y\right)-U_{x-a e_{\mu} \mu}^{*} \delta\left(x-a e_{\mu}-y\right)\right]
\end{gathered}
$$

- With the free fermion propagator

Fermion doubling problem:

$$
\left\langle\psi^{\dagger}(-p) \psi(p)\right\rangle=\left[\frac{i}{a} \sum_{\mu} \sigma_{\mu} \sin \left(p_{\mu} a\right)+m\right]^{-1} \quad \begin{aligned}
& 4 \text { poles: } p_{1}=(0,0), p_{2}=(\pi / a, 0) \\
& p_{3}=(0, \pi / a), p_{4}=(\pi / a, \pi / a) \mathrm{vs} \\
& 1 \text { pole: } p=(0,0) \text { in continuum }
\end{aligned}
$$

Lattice action

$$
S=i \int d^{4} x\left[\mathscr{L}_{g}+\mathscr{L}_{f}\right]=S_{g}+S_{f}
$$

- Add extra terms to kill doublers (example: Wilson fermion)

$$
\begin{aligned}
Q_{n}(x, y) & =m \delta(x-y)+\frac{1}{2 a} \sum_{\mu=1}^{2} \sigma_{\mu}\left[U_{x, \mu} \delta\left(x+a e_{\mu}-y\right)-U_{x-a e_{\mu} \mu}^{*} \delta\left(x-a e_{\mu}-y\right)\right] \\
& -\frac{r}{2} \sum_{\mu=1}^{2}\left[U_{x, \mu} \delta\left(x+a e_{\mu}-y\right)-U_{x-a e_{\mu} \mu}^{*} \delta\left(x-a e_{\mu}-y\right)\right]
\end{aligned}
$$

- Price to get rid of doublers (Nielsen-Ninomiya No-Go theorem), one has to abandon one of
- Unitarity
- Locality
- Chiral symmetry
- To summarize, on a discrete lattice

Lattice action

$$
S_{g}[U]=\frac{1}{g^{2}} \sum_{p}\left[1-\frac{1}{2}\left(U_{p}+U_{p}^{\star}\right)\right]+\bar{\psi} Q(U) \psi=S_{g}^{l}[U]+S_{f}^{l}[U, \psi]
$$

- Integrate out the fermionic degrees of freedom

$$
Z^{l}=\int d[U, \psi] e^{-S^{l}}=\int d[U] e^{-S_{g}^{l}} \operatorname{det}[Q(U)]
$$

- Fermion determinant is computationally more expensive
- A simple way to deal with it: quenched approximation

$$
\operatorname{det}[Q(U)]=1
$$

- Fermion pair creation and annihilation processes ignored
- Such fermion loops are expected to have small effects
- Significant simplification in numerical simulations, several orders of magnitude faster

Mass spectrum

- Hadron mass spectrum can be studied from correlation function of an operator with the same quantum number of a given hadron
- Construct operators with suitable quantum numbers (interpolators)
- Compute the two-point correlation function
- Study the large time limit of the correlation function
- Consider

$$
C(p, t)=\sum_{x} e^{i p x}\left\langle O(x, t) O^{\dagger}(0,0)\right\rangle
$$

- Insert a complete set of energy eigenstates, it becomes

$$
\begin{aligned}
& \sum_{x} \sum_{n} e^{i p x}\langle 0| O(x, t)|n\rangle\langle n| O^{\dagger}(0,0)|0\rangle \\
= & \sum_{x} \sum_{n} e^{i p x}\langle 0| O(x, 0) e^{-H t}|n\rangle\langle n| O^{\dagger}(0,0)|0\rangle \\
= & \sum_{x} \sum_{n} e^{i p x}\langle 0| O(x, 0)|n\rangle\langle n| O^{\dagger}(0,0)|0\rangle e^{-E_{n} t}
\end{aligned}
$$

Mass spectrum

- For finite lattice size, the values of E_{n} are discrete
- For simplicity, we project to zero momentum $p=0$

$$
C(0, t)=\sum_{n} c_{n} e^{-E_{n} t}, \quad c_{n}=\sum_{x}\langle 0| O(x, 0)|n\rangle\langle n| O^{\dagger}(0,0)|0\rangle
$$

- In large time limit, the exponential fall-off of the correlation function gives the ground state energy
- One can define the effective mass as

$$
a m_{\mathrm{eff}}=-\ln \frac{C(0, t)}{C(0, t-1)}
$$

- It reaches a plateau at large time separations as the ground state exponential dominates in the correlation function

Mass spectrum

- For finite lattice size, the values of E_{n} are discrete
- For simplicity, we project to zero momentum $p=0$

$$
C(0, t)=\sum_{n} c_{n} e^{-E_{n} t}, \quad c_{n}=\sum_{x}\langle 0| O(x, 0)|n\rangle\langle n| O^{\dagger}(0,0)|0\rangle
$$

- In large time limit, the exponential fall-off of the correlation function gives the ground state energy
- If one chooses periodic boundary condition, then

$$
C(0, t)=\sum_{n} c_{n}\left[e^{-E_{n} t}+e^{-E_{n}(T-t)}\right]
$$

Mass spectrum

- Two-point function calculation (for $\left.O_{\Gamma}(x)=\bar{\psi}(x) \Gamma \psi(x)\right)$

$$
\left\langle\mathcal{O}_{\Gamma}(x) \mathcal{O}_{\Gamma}(0)\right\rangle=\bar{\psi}(x) \Gamma \bar{\psi}(0) \psi(x) \Gamma \psi(0)=\operatorname{tr}[\Gamma S(x, 0) \Gamma S(0, x)]
$$

$S(x, y)$ is the quark propagator, and computed as the inverse of the fermion matrix

$$
Q S(x, y)=\delta(x, y)
$$

Taking the meson interpolator with $\Gamma=\gamma_{5}$ as an example

$$
\begin{aligned}
\left\langle O_{\mathrm{PS}}(0) O_{\mathrm{PS}}(t)\right\rangle & =\sum_{\mathbf{x}}\left[\bar{\psi}(\mathbf{x}, t) \gamma_{5} \Psi(\mathbf{x}, t)\right]\left[\bar{\psi}(0,0) \gamma_{5} \Psi(0,0)\right] \\
& =\sum_{\mathbf{x}} \operatorname{Tr}[S_{F}(0,0 ; \mathbf{x}, t) \underbrace{\gamma_{5} S_{F}(\mathbf{x}, t ; 0,0) \gamma_{5}}_{=S_{F}^{\dagger}(0,0 ; \mathbf{x}, t)}]
\end{aligned}
$$

Wilson loop

- A Wilson loop is a loop formed by link variables, the simplest example is a plaquette
- For a Wilson loop which has length m in spatial direction and n in temporal direction

$$
\begin{aligned}
& W(m, n)=\left\langle U\left(x, x+m a e_{\nu}\right) U\left(x+m a e_{\nu}, x+n a e_{\mu}+m a e_{\nu}\right)\right. \\
& \left.\quad \times U\left(x+n a e_{\mu}+m a e_{\nu}, x+n a e_{\mu}\right) U\left(x+n a e_{\mu}, x\right)\right\rangle
\end{aligned}
$$

In the continuum limit, it becomes

$$
W(m, n) \rightarrow W(r, t)=\left\langle e^{i e \oint_{C} d x_{\mu} A_{\mu}}\right\rangle
$$

$\bigcirc \mathrm{C}$ is a rectangular contour with $r=m a$ and $t=n a$

- It represents the probability amplitude of creating an infinitely heavy (static) fermion-antifermion pair at $t_{0}=0$ (with separation r) and annihilating at time t

Wilson loop

- For large t, one expects

$$
W(r, t \rightarrow \infty) \rightarrow e^{-V(r) t}=e^{-V(r) n a}
$$

$-V(r)$ is the static potential, it has a linear behavior with the distance as the Coulomb potential in D spatial dimensions

$$
V(r) \rightarrow r^{2-D}
$$

- It can be extracted by computing

