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QED in two dimensions
- Lagrangian
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o u,v = 0,1, first studied by Schwingerfor N=1, m =0
Schwinger, PRD 1962

o Invariant under gauge transformation |
w(x) = eOyx), Ax) = Ax) ——0,A®X)
e

o y* are Dirac matrices in 2-dim.
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~ For one massless fermion (N = 1,m = 0), EOM
y*Dy =0, D,=0,+1ieA,
0,F" =", j*=egyy, withd,j*=0



QED in two dimensions

~ In two dimensions, we have (¢# 1s 2-dim. antisymmetric tensor)
Y'rs=—¢€"y,
~ Axial vector and vector current are related to each other
I =wrtysy = — ey = — e,
_ At classical level

0,J! =0
o At quantum level (anomaly) o "
2
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> The theory contains a free massive boson (fermion-antifermion

bound state), trivial higher states consisting of n free Schwinger
bosons

~ In the massive model, these higher states turn into n-boson bound
states



Path integral formalism

- Green’s function 1s given by

A A 1 .
(0] T{O,(x))O05(xy)... } |0) = TdIA, yle’ [d[A, Y10,(x)0y(xy)...€®, S = [d4x3

- Switch to imaginary time
t = —itg, expliS] = exp[—Sg]
- We then have
(01 T{0,(x)0s(x,)... }|0) = %Jd[A, W10,(x))0y(x,)...e %, Sp = in4x3E

/= Jd[A, l/f]e_SE

~ Minkowskian Green’s functions can be reconstructed from their
Euclidean counterpart by analytic continuation through Wick
rotation

= Euclidean formulation of QFTs can be conveniently realized on a
discrete lattice



Lattice action

- We need to discretize the Lagrangian
o Discretized derivative
o w(x) = [y(x +ae) —y(x —ae,)]/(2a)

~ To maintain gauge invariance, one needs the parallel transporter

X—ae

igvrx+ae'u
Ux—ae,x+ae)=ce A (2)dz,

~ The smallest of which defines the link variable on the lattice

Ux+ae,x)=U,,

which satisfies
Ulx, x + aeﬂ) =U(x+ ae,, X) = Ux_ﬁ = U;‘fﬂ
~ All parallel transporters can be constructed from links, for
example

Ux—ae,x+ae,)=Ux—ae, x)Ux,x+ae,)



Lattice action
S = in“x[ng + 21 =8,+5;

- Bosonic part can be constructed from the smallest closed loop
formed by link variables, called plaquette

n+ v Un+v) n+p+v

UpE Ux,x+ae)U(x + ae,, x +ae, + ae,) -
X Ux +ae, + ae,, x + ae)U(x + ae,, X) Ui | Q | Uutn+ 1)
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SAUI=pY, [1 -~ W,+UD]. = R VY

g2a?
~ Naive lattice fermion
= U, wx+ae,)— UL ae, Wx—ae,)l/(2a)

0,(x,y) = m&(x — y)+—20 O +ae, —y) — U, 5(x—ae,—y)|

u=1
Fermion doubling problem:

~ With the free fermion propagator For m=0.
[ , —1 4 poles: p; = (0,0), p, = (n/a,0)
WP () = [= Y osin(p,a)+ml 07 = (. xla) vs

# 1 pole: p = (0,0) in continuum



Lattice action
S = in“x[ng + 21 =8,+5;

- Add extra terms to kill doublers (example: Wilson fermion)
Q. (x,y) = mé(x — y)+—z U, 0x+ae,—y) - xaeﬂé(x—ae —y)]

——Z[ 5(x+ae —}’)_ x ae, ”5()6—616 _y)]

> Price to get rid of doublers (Nielsen-Ninomiya No-Go theorem),
one has to abandon one of

o Unitarity
o Locality
= Chiral symmetry

~ To summarize, on a discrete lattice



Lattice action

1 1
S{U1=—5 2 1=, + UD] + 50Uy = S{IU1 + LU, ]
p

_ Integrate out the fermionic degrees of freedom

7! = Jd[U, wle™S = Jd[U]e—Sé det[Q(U)]

~ Fermion determinant 1s computationally more expensive

- A simple way to deal with 1t: quenched approximation

det[Q(U)] =1

- Fermion pair creation and annihilation processes ignored
> Such fermion loops are expected to have small effects

> Significant simplification in numerical simulations, several orders
of magnitude faster



Mass spectrum

- Hadron mass spectrum can be studied from correlation function of
an operator with the same quantum number of a given hadron

> Construct operators with suitable quantum numbers
(interpolators)

~ Compute the two-point correlation function
> Study the large time limit of the correlation function

~ Consider
C(p.t) = ). e"(0(x,)0"(0,0))

> Insert a complete set of energy eigenstates, 1t becomes

Z 2 (0] Ox, 1) | n)(n] 07(0,0)]0)
= Z Z e”(0| 0(x,0)e" | n)(n| 07(0,0)| 0)

- Z Z eP*(0| O(x,0) | n){n]| O7(0,0)| 0)e =



Mass spectrum

- For finite lattice size, the values of E, are discrete
- For simplicity, we project to zero momentum p =

CO.H =Y ce B, ¢, =) (0]0(x.0)|n)(n]|0%0.0)]0)

n

~ In large time limit, the exponential fall-off of the correlation
function gives the ground state energy

_ One can define the effective mass as
C(0,1) o | | | | |

am.qg = — 11 [
o C0,r—1) 09 |-
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~ It reaches a plateau at large J
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Mass spectrum

- For finite lattice size, the values of E, are discrete
© For simplicity, we project to zero momentum p =

CO.H =Y ce B, ¢, =) (0]0(x.0)|n)(n]|0%0.0)]0)

n

o In large time limit, the exponential fall-off of the correlation
function gives the ground state energy

> If one chooses periodic boundary condition, then
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Mass spectrum
= Two-point function calculation (for Op(x) = w(x)'y(x))

(Or(@)Or(0)) = H(@)DH(0)()TH(0) = tr[TS (. 0TS (0, 2)]

© S(x, y) is the quark propagator, and computed as the inverse of the
fermion matrix

OS(x,y) = 6(x,y)

~ Taking the meson interpolator with ' = . as an example

(Ops(0)Ops(t)) = > [b(x,t)y¥(x,1)] [¢(0,0)75%(0,0)]

X

= > Tr [Sp(0,0;x,t) y55k(x,1;0,0)7s

N
:S}T(O.O;x.t)




Wilson loop

- A Wilson loop 1s a loop formed by link variables, the simplest
example 1s a plaquette

> For a Wilson loop which has length m in spatial direction and n in
temporal direction

A

W(m,n) = (U(x,x + mae )U(x + mae,, x + nae, + mae,)

X U(x + nae, +mae,, x + naeﬂ)U(x + nae,, X))

Y

_ In the continuum limit, it becomes
W(m,n) — W(r, 1) = (e"%c ™)

> C 1s a rectangular contour with r = ma and ¢t = na

_ It represents the probability amplitude of creating an infinitely
heavy (static) fermion-antifermion pair at £, = 0 (with separation
r) and annihilating at time ¢



Wilson loop

© For large ¢, one expects

W(r,t - o) > e

=Vt — e—V(r)na

© V(r) is the static potential, it has a linear behavior with the
distance as the Coulomb potential in D spatial dimensions

V(r) - r*P

> It can be extracted by computing

aV(an) |
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