
   Yang Zhang 张扬


T.D.Lee Institute 

Sep. 16, 2021

University of Science and Technology of China


Computational algebraic geometry methods for the 
analytic computation of Feynman integrals

1



2

Feynman integrals

Basis computational tool in quantum field theory
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Feynman 

integrals

Feynman integrals, nowadays

precision 

physics

formal

theory


N=8 supergravity

is UV-finite until

five loop


Gravitational wave

template computation
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It is still a basic tool in quantum field theory;

Crucially for precision high-energy physics, formal theories, 

Feynman 

integrals

Differential

equation

Transcendental

Functions

Algebraic

Structure 


Computer 

Science


The main focus is on multi-loop Feynman Integrals

       Significant progress after 2010

Feynman integrals, nowadays
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New analytic results on Feynman integrals

2-loop Feynman integrals for pp -> Hj

2-loop Feynman integrals for pp -> tt

2-loop Feynman integrals for pp ->  3 jets

2-loop Feynman integrals for pp -> H + 2 jets

3-loop 4-point Feynman integrals with one-massive external line

4-loop form factor Feynman integrals

4-loop analytic electron g-2 Feynman integrals

5-loop 4-point massless Feynman integrals (UV part)

… …

                 Di Vita, Gehrmann, Laporta, Mastrolia, Pierpaolo, Primo, Schubert, Ulrich

                 von Manteuffel, Panzer, Schabinger

                 Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello, Salvatori, Smirnov


 Bern, Carrasco, Chen, Johansson, Roiban, Zeng

 Ita, Page, Samuel, Zeng


                 Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia       …




Why analytic Feynman integrals?

• Once the analytic expression is obtained, the phase point generation is extremely fast

• Avoid unstable numeric phase points

• Understand the deep structure and hidden symmetry in quantum field theory

• and yes, we can.
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see also developments in numerics


Sector decomposition + GPU 

+ quasi-Monte Carlo https://secdec.readthedocs.io/en/stable/

and the 

reference therein

numeric differential 

equation

JHEP 05 (2020) 149,   Czakon and Niggetiedt



Mainstream Analytic Methods

• Canonical differential equation (Henn 2013), in terms of polylogarithm


• Partial fraction + recursive integration (Panzer 2015), package: HyperInt, in terms of polylagarithm

• Elliptic Canonical Differetial Equation (Broedel, Duhr, Dulat, Tancredi, 2018), in terms of elliptic 

polylagarithm

Most used

Sometimes magic 

• Mellin-Barnes

• Dimension Recursion Relations (Lee, Smirnov 2012), 


usually numeric, but sometimes provide analytic result for complicated integrals

• Integral Bootstrap (Chicherin, Henn, Mitev 2017)


               can easily get the “nice” integrals, eg. conformal, in an integral family 
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This talk is about using computational algebraic geometry methods

for

the analytic Feynman integral computations



Outline


•  Analytic Feynman integral computation, an overview


•  Computational Algebraic Geometry method for Feynman integrals


        1. Module lift method for UT integral searching

        2. Syzygy method for complicated IBP computations
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Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia 


“All master integrals for three-jet production at NNLO”, PhysRevLett. 123 (2019), no. 4 041603

“Analytic result for a two-loop five-particle amplitude”, PhysRevLett. 122 (2019), no. 12 121602


Based on


10

Boehm, Wittmann, Xu, Wu and YZ


“IBP reduction coefficients made simple ”  JHEP 12 (2020) 054      

Bendle, Boehm, Heymann, Ma, Rahn, Wittman, Ristau, Wu, YZ 2021


“Two-loop five-point integration-by-parts relations in a usable form”,  2104.06866
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Analytic Feynman integral computation

                     an overview




Canonical Differential Equation for Analytic Feynman integrals

UT Feynman integrals

Canonical Differential Equation

Analytic Feynman Integrals

12

Feynman integrals

master integrals

Module Lift method

Syzygy method

It is usually easier to compute

Feynman integrals with differential equations

than by a direct integration.
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From Feynman integrals to master integrals 
For a scattering process, there are a huge number of integrals


<latexit sha1_base64="4eks59l9PbQeay7yoIRVPKM1JHw="></latexit>Z
dDl1
i⇡D/2

. . .

Z
dDlL
i⇡D/2

1

D↵1
1 . . . D↵k

k

, ↵i 2 Z negative index means

the numerator

IBP reduction
at the two/three loop orders,

IBP reduction can reduce millions of Feynman integrals to hundreds of master integrals. 

Chetyrkin, Tkachov 1981

∫
dDl1
iπD/2

. . .

∫
dDlL
iπD/2

∂

∂lµi

vµi
Dα1

1 . . . Dαk
k

= 0

After a tensor

reduction
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IBP reduction
∫

dDl1
iπD/2

. . .

∫
dDlL
iπD/2

∂

∂lµi

vµi
Dα1

1 . . . Dαk
k

= 0

Usually by choosing different vectors, we also have a huge number of IBP relations

To get the complete reduction: Gaussian Elimination (Laporta algorithm 2000)

Two issues:


The Gaussian Elimination is computationally heavy, sometimes 

the most time consuming step for a scattering amplitude computation


 The IBP reduction coefficients may be too large to use.

Problem 1: Can we shorten the IBP reduction coefficients?



Differential Equation for Feynman Integrals

d = 4� 2✏ I(x̄, ✏) master integrals as a column vector

∂

∂xi
I(x̄, ε) = Ai(x̄, ε)I(x̄, ε)(Kotikov 1991)

Can be used both 

numerically and analytically 


eg. Gehrmann, Remiddi 1999, 

Papadopoulos 2014, 


Liu, Ma, Wang, 2018  …

Different choices of the master integrals change the DE dramatically. 

The simplest choice is

the integrals with uniform transcendental (UT) weights, which gives 

Canonical Differential Equation
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is similar to Christoffel symbols in general relativity

transform inhomogeneously with a change of master integrals



What is Uniformly transcendental (UT) integrals?
T (log) = 1, T (π) = 1, T (ζn) = n, T (Lin) = n, . . . , T (f1f2) = T (f1) + T (f2)

I = (overall normalization)×
∞∑

k=0

εkfk, T (fk) = k
1

2

3

4

12

34

1

2

3

4

(
1
4ε

+
13
8

+
1
48

(
345− 2π2

)
ε+

1
96

(
−256ζ(3) + 2595− 26π2

)
ε2 + O

(
ε3
))

(s12)1−2ε

(s12)−1−2ε
(
− 1

ε2
+

π2

6
+
32ζ(3)ε
3

+
19π4ε2

120
+ O

(
ε3
))

(
− 1
4ε4

+
π2

24ε2
+
8ζ(3)
3ε

+
19π4

480
+ O

(
ε1
))

(s12)−1−2ε

UT

UT

not UT

UT basis is also good for numeric computations 
16

also require the 1st derivative has the  transcendental weight n-1



UT Integral ⇒ Canonical DE

Feynman integrals are the iterated integration of rational functions ⇒ polylogarithm functions

Chen’s (陈国才) iterated integrals, homotopically invariant


Ĩ(x) = P exp

(
ε

∫

C
dA

)
Ĩ(x0)

I = (overall normalization)×
∞∑

k=0

εkfk, T (fk) = k

@

@xi
Ĩ(x̄, ✏) = ✏Ãi(x̄)̃I(x̄, ✏)

~


path-ordered 
Analogy of perturbation theory of QFT

(Dyson series) 
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Canonical DE



Henn 2013

@

@xi
Ĩ(x̄, ✏) = ✏Ãi(x̄)̃I(x̄, ✏)

= ✏

✓X

l=1

@ log(Wl)

@xi
ml

◆
Ĩ(x̄, ✏)

Symbol letters

Constant matrix

Proportional to 𝝐

The first line ensures that the equation can be solved perturbatively in 𝝐

The second line ensures that the solution is the polylogarithm function in symbol letters


Analogue of the interaction picture in quantum mechanics 

∂

∂xi
I(x̄, ε) = Ai(x̄, ε)I(x̄, ε)

@

@xi
Ĩ(x̄, ✏) = ✏Ãi(x̄)̃I(x̄, ✏)

Ĩ(x̄, ✏) = T(x̄, ✏)I(x̄, ✏)

i~ @
@t
| i = (H0 + ✏H1)| i

i~ @
@t
| iI = ✏HI(t)| iI

|ψ〉I = eiH0t|ψ〉
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UT Integral ⇒ Canonical DE
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UT integrals are like 

small islands in an ocean

Problem 2: How do we find UT integrals?



To find UT integrals

st A massless scale box integral with the overall factor “st” is UT  

20

=

But we’d better to “guess" UT integrals before we get the analytic result 
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Applications of 

Computational 


algebraic geometry
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One main difficulty for analytic scattering amplitude computation is to deal with

polynomials, rational functions:

Simplify the differential equation

polynomial coefficients for IBP reductions

…

The key to polynomial/rational function problems

is computational algebraic geometry
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Algebraic Geometry

Algebraic geometry originates from the study of curves/surfaces defined by 

multivariate polynomial equations.

 

Modern algebraic geometry generalised these geometric objects to abstract

objects (like scheme), and has been applied to number theory, complex analysis

, topology and physics.



Algebraic 

Geometry


Computer

Algorithms

Computational 

Algebraic Geometry


originated in 1970s

thrive from 2000s


Bruno Buchberger, Frank-Olaf Schreyer, Jean-Charles Faugère

David Eisenbud, Michael Stillman, Daniel Grayson, Wolfram Decker …

Computational Algebraic Geometry (CAG)

Personally I learnt CAG from 

Professor Michael Stillman. 



CAG in one slide

Groebner basis

Syzygy Lift

Trinity of CAG

“Gaussian elimination”

for several multivariate polynomials 

Solve homogeneous linear equations

with polynomial solutions

Solve inhomogeneous linear equations

with polynomial solutions

Buchberger algorithm


Schreyer algorithm
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Application of

Computational Algebraic Geometry


for UT integral searching
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UT integral searching

based on the properties of Feynman integrals

based on the transformation of a canonical differential equation 

Lee’s algorithm 2014 

4D leading singularity (residue)

Baikov leading singularity (residue)

dlog integrand construction

initial algorithm Dlapa,Henn,Kai, 2019

Henn 2013, 2014

Henn, Smirnov, Wasser 2018    Chen, Jiang,Xu,Yang 2019

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, 2019

Lee, 2019

We show how

to use computational

algebraic geometry

to help these computations
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st

UT integral usually has constant residues

UT


residues in 4D
<latexit sha1_base64="JviX/aq9q6yuU0WFT0wQ1EwKYyY=">AAAB7nicbVDLSgNBEOyNrxgfiXr0MiQIkWjYVVCPQS8eI5gHJEuYncwmQ2Znl5lZYVnyEYJ4UMSr3+Mtf+PkcdDEgoaiqpvuLi/iTGnbnliZtfWNza3sdm5nd28/Xzg4bKowloQ2SMhD2fawopwJ2tBMc9qOJMWBx2nLG91N/dYTlYqF4lEnEXUDPBDMZwRrI7XK585ZxTntFUp21Z4BrRJnQUq1YrfyMqkl9V7hu9sPSRxQoQnHSnUcO9JuiqVmhNNxrhsrGmEywgPaMVTggCo3nZ07RidG6SM/lKaERjP190SKA6WSwDOdAdZDtexNxf+8Tqz9GzdlIoo1FWS+yI850iGa/o76TFKieWIIJpKZWxEZYomJNgnlTAjO8surpHlRda6qlw8mjVuYIwvHUIQyOHANNbiHOjSAwAie4Q3erch6tT6sz3lrxlrMHMEfWF8/Bj2RCg==</latexit>

(�1,+1)

It is much easier to compute residues than Feynman integrals, so

residue analysis can be a good approach for UT searching.

Arkani-Hamed, Bourjaily, Cachazo, Trnka  2010

ideas from the study of N=4 SYM 
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Use residues to find UT integrals: the reality

sometimes, it is necessary to consider D-dimensional residues

∫
dDl1
iπD/2

. . .

∫
dDlL
iπD/2

1

Dα1
1 . . . Dαk

k

= C(sij , L, E,D)

∫
dz1 . . . dzk

F
D−L−E−1

2

zα1
1 . . . zαk

k

Baikov parameterization 

a duality of 


Feynman parameterization

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, 2019


Frequently, it is necessary to consider a complicated numerator as a UT candidate

N =
X

f↵(sij)⇥ (scalar product)↵

contains

loop momenta

<latexit sha1_base64="iW/h8BdmiM1qFdPyTqwLfd3z1vw="></latexit>Z
dDl1
i⇡D/2

. . .

Z
dDlL
i⇡D/2

N

D1 . . . Dk
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UT numerator

∑

α

fa × Res

(
(Scalar Product)α

D1 . . .Dn

)
= (1, 0, . . . , 0, . . . 0)

Requirement for getting constant residues or other

constant

vectors

It would better to be polynomials in Mandelstam variables

to avoid unphysical poles

<latexit sha1_base64="Jpq76f1J/ktUEbkRx1yrYWxqSm0="></latexit>

If we solve the equation for f↵’s above as a linear equation, the solutions
generators are usually rational functions not polynomials!

We need the CAG method “Lift”
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Lift
“Lift” means to find linear solutions with polynomial entries only 

I = hy2�x3�x�1, x+y+2, x2+y2�1i, Z(I) = ;. By Hilberts’ Nullstellensatz,
1 2 I, i.e., there exist polynomials f1, f2, f3

1 = f1(x, y)(y2 � x3 � x � 1) + f2(x, y)(x + y + 2) + f3(x, y)(x2 + y2 � 1)

But Hilbert did not say how to find such fi’s.

Example: 

It can be solved by the “Lift” computation in CAG.  

<latexit sha1_base64="OJuxaaRbPBg4flfEmwg1Y0djutE=">AAACmHicbVHJbhNBEO2ZsASzmSAucClhIwV50cxEAiQuFosCt4DiJJI39fSUxy33MuruCR5Z/ib+hRt/Q4/jAySU1FLp1euqV/XSQnDrouh3EO7dun3n7v69xv0HDx89bj45OLO6NAyHTAttLlJqUXCFQ8edwIvCIJWpwPN0+bGun1+isVyrU1cVOJE0V3zOGXUemjV/ni4QllgBt+A0GGSlJ1+iqKDgbAllARQKyg1wBe3xupomvdX0qLfqxd1Vp+ok3dU06dRoPN60u+CFSK6oQ3C+8YLnC7QOMswNIkittORUwOGx0ZgqNOC1+8lMy6J0W0mvu1AqxwX8QMjRbduoUqae247b/VmzFfWjbcDNJN4lLbKLk1nz1zjTrJSoHBPU2lEcFW6ypsZxJnDTGJcWC8qWNMeRTxWVaCfr7WE38MojGcy18U852KJ//1hTaW0lU8+U1C3s9VoN/q82Kt383WTNld8aFbsaNC9FbUHtEmTcO+G8CRmnzHCvFdiCGsqc97LhjxBfX/lmcpb04zf9o29Ja/Bhd4598oK8JIckJm/JgHwhJ2RIWPAseB98Cj6Hz8NBeBx+vaKGwe7PU/JPhN//AGGoxpM=</latexit>

The key is to recursively pick up a pair in {y2�x3�x�1, x+y+2, x2+y2�1},
eliminate the highest degree monomial (Groebner basis computation), until we
get the number 1.<latexit sha1_base64="IHIt7q0dPel3ACvquxESouLJqkQ="></latexit>

f1 = �4

3
(1 + y)

f2 =
1

3
(2� 5x� 3y + 2xy2 + 2y3)

f3 =
1

3
(5� 4x� 4xy � 2y2)
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Example

1

2 4

5

3

k1 k2

<latexit sha1_base64="WdxCkNr1apaIjMmaPJj+rlZueH8="></latexit>

10X

↵=1

f↵M↵� = b� , � = 1, . . . 8

8 poles, 10 possible scalar products

<latexit sha1_base64="AXoTderAlVQvhfy+CBbfw0R5ItA=">AAADqXicjVJNb9NAEN3YfBTz0RSOXFYkQEqTyHZS4FKpggsHDq1o0og4ROv12ll1vbZ210WR5d/Gf+DGv2HtGJTGlWC08j69eTOzMx4/ZVQq2/7VMsw7d+/d33tgPXz0+Ml+++DpVCaZwGSCE5aImY8kYZSTiaKKkVkqCIp9Ri79q4+l//KaCEkTfqHWKVnEKOI0pBgpTS0PWj++U7WCXf+k5/ShXZ3BX1Sew28X3T7MPYnhF8qjjCFRWKlIrmlAJFQrAmXCsjIbDBMBu2H3texbnk8iyvMIaYF4U1jhicdIqHoWrD1ICLQuclZY0IaeZ8ExlMvccYvyckcF3Og33MAt2fFx4QkardRhI2A0LmpFw+Uc7+RqZrK3voNG7A3yH5luEepejv5LWGfUrWwJPcKDelZWTW+4P5Ndtjv20K4MNoFTgw6o7WzZ/ukFCc5iwhVmSMq5Y6dqoWsoihnRVTJJUoSvUETmGnIUE7nIq00r4EvNBNV/DhOuYMVuR+QolnId+1oZ6wfKXV9J3uabZyp8v8gpTzNFON4UCjMGVQLLtYUBFQQrttYAYUH1WyFeIYGw0stt6SE4uy03wdQdOm+Ho3O3c/qhHsceeA5egB5wwDtwCj6BMzAB2HhlfDYmxtQ8Ms/Nmfl1IzVadcwzcMNM/BuSohjo</latexit>

with b = (1, 0, 0,�1, 0, 0, 0, 0)T , Singular provides the solution for f ’s,

f =

0

BBBBBBBBBBBBBB@

0
4s12s23 (s12 � 2s45)
4s12s34s45
4s12s15 (s12 � s45)
0
0
�4s12s15
�4s12 (s12 � s45)
�4s12 (s23 + s45)
�4s12 (s12 � s34)

1

CCCCCCCCCCCCCCA

A computer algebra system

for CAG

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, 2019


Find all UT integrals

 on this sector




Analytic Feynman integral computation example

1

2 4

5

3

k1 k2

∂

∂xi
I = AiI

1.4 GB 

Ĩ = T(ε)I,
∂

∂xi
Ĩ = εÃĩI

Canonical

5 MB 

Traditional way:

It took 3 months on UZH cluster to do the algebra …
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Canonical differential equation and UT:



Examples: 2-loop 5-point nonplanar DE

d̃I(sij; ε) = ε

(
31∑

k=1

akd logWk(sij)

)
Ĩ(sij; ε)

symbol letters31 (108,108) matrices with

rational number entries, 

fitted numerically, 291 kB

v1 = s12, v2 = s23, v3 = s34, v4 = s45, v5 = s15

New method:

Boundary conditions are determined by the physical limits

only for nonplanar odd letters

34



implemented in Ginac

Analytic Feynman integral: Solution

All 2-loop 5-point massless integrals are analytically evaluated 

Goncharov polylogarithm (or simpler logarithm) up to weight 4

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia, 2019


A tiny example:

I =
1
ε2

f(2) +
1
ε
f(3) + f(4) +O(ε) .

Leading part:

f(2) = � 3

Li2

✓
1
W27

◆
� Li2

✓
W27

◆
+ Li2

✓
1
W28

◆
� Li2

✓
1

W27W28

◆

� Li2

✓
W28

◆
+ Li2

✓
W27W28

◆�
.

2

1

4

35

Caron-Huot, Chicherin, Henn, Peraro, YZ, Zoia 2020
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Again, why analytic

Numeric (pySecDec)

with one CPU, GiNaC


~ minutes for one point, 10+ digits


×8
 NVIDIA Tesla V100 GPUs

1 week to get one numeric point

error estimated to be ~0.5%

Analytic (our result)

2-loop 5-point massless integrals in the physical region

36
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Application of

Computational Algebraic Geometry


for IBP reductions



An Example



2loop 5point nonplanar massless integrals with the numerator degree up to deg 5  

Analytic IBP reduction coefficients 

can be obtained, but huge …



Look at one example, a 5-page long coefficient

page 1



Look at one example, a 5-page long coefficient

page 2



Look at one example, a 5-page long coefficient

page 3



Look at one example, a 5-page long coefficient

page 4



Look at one example, a 5-page long coefficient

page 5



Using our algorithm, this coefficient is

simplified to



3s23s34
2(4✏+ 1)s12s45(�s15 + s23 + s34)

� 3s34
2(4✏+ 1)s12s45

+
15s152 � 15s15s34

8s23s45(�s12 � s15 + s34)

+
s23s342

s452(s45 � s12)(�s15 + s23 + s34)
� 2s23s342

s12s452(�s15 + s23 + s34)
+

s23s34 + s342

s45(s45 � s12)(�s15 + s23 + s34)

� 11s23s34
2s12s45(�s15 + s23 + s34)

� 15s15s34
8s23s45(�s12 + s34 + s45)

+
s15 � s23 � s34

s45(�s12 � s23 + s45)
+

2s15 � 2s34
s12s23

+
15s15 � 15s34

8s23(�s12 � s15 + s34)
� 7s23

2s12(�s15 + s23 + s34)
� 15s23

4(�s12 � s15 + s34)(�s15 + s23 + s34)

� s15
2s12(�s12 � s23 + s45)

+
s23 � s45

2s12(s15 � s23 + s45)
+

15s15
8s45(�s12 � s15 + s34)

+
15

4(�s12 � s15 + s34)
+

7s34
4s23(�s12 � s23 + s45)

� 5s34
4(s45 � s12)(�s12 � s23 + s45)

� 15s34
8s23(�s12 + s34 + s45)

+
1

2(�s12 � s23 + s45)
+

4s34
s12s45

� 11s34
4s45(s45 � s12)

� 15

8(�s12 + s34 + s45)
+

5

4(s45 � s12)
+

4

s12
� 3s342

s452(�s15 + s23 + s34)

+
s34

4s45(�s15 + s23 + s34)
+

s45
2(s34 + s45)(s15 � s23 + s45)

+
3s34
s452

� 1

2(s34 + s45)
� 1

4s45

6

It is ~16 times compression !


=



  ~ 20 GB   ⟹   190 MB    

IBP coefficients size

Boehm, Wittmann, Xu, Wu and YZ 2020  

Bendle, Boehm, Heymann, Ma, Rahn, Wittman, Ristau, Wu, YZ 2021    

two orders of magnitude simplification
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To simplify IBP reduction coefficients 
 Boehm, Wittmann, Xu, Wu and YZ 2020  


• Use a UT basis for IBP reduction

• use a CAG based method to decompose the reduction coefficients 


observation:

the coefficients do not have

unphysical poles

multivariate partial fraction

from computational 

algebraic geometry



Improved Leinartas algorithm


Polynomial & Syzygy division

Hilbert Nullstellensatz 

Algebraic dependence

Polynomial & Syzygy division

<latexit sha1_base64="18wb3xaP8QUI4v60BbCpCreeXA4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LC2CINSkB/VY9OKxov2ANpTNdpMu3WzC7kYIoT/Bi4giXv1F3vpv3LQ9aOuDgcd7M8zM82LOlLbtqVVYW9/Y3Cpul3Z29/YPyodHbRUlktAWiXgkux5WlDNBW5ppTruxpDj0OO1449vc7zxRqVgkHnUaUzfEgWA+I1gb6cG/CAblql2zZ0CrxFmQaqPSP3+dNtLmoPzdH0YkCanQhGOleo4dazfDUjPC6aTUTxSNMRnjgPYMFTikys1mp07QqVGGyI+kKaHRTP09keFQqTT0TGeI9Ugte7n4n9dLtH/tZkzEiaaCzBf5CUc6QvnfaMgkJZqnhmAimbkVkRGWmGiTTsmE4Cy/vEra9ZpzWavfmzRuYI4inEAFzsCBK2jAHTShBQQCeIY3eLe49WJ9WJ/z1oK1mDmGP7C+fgAWH5Cm</latexit>

f/g

MPF result

Red

black Orignial Leinartas

Our improved 

Leinartas’ algorithm

Multivariate partial fraction from Algebraic Geometry


https://raw.githubusercontent.com/Singular/Singular/spielwiese/Singular/LIB/pfd.lib

our package:

(now it is a standard library of the software Singular)


can simplify not only IBP reduction coefficients

but also general rational functions in scattering 

amplitude computations.



A key point


Polynomial division

unique, low degree

non-unique, degree out of control

Syzygy division to significantly simplify the quotients

syzygy generators

<latexit sha1_base64="NTrjL8uB8RCtNa9xdMiTS8GDvhk="></latexit>

(b1, . . . , bm) =
X

↵

P↵ ⇥ (a(↵)1 , . . . , a(↵)m ) + (B1, . . . Bm)

remove the syzygy part and thus simplify the quotients 

<latexit sha1_base64="Nw5g1SNvEfkYPu9dphMUgXYc1Wc=">AAACCnicbVA9SwNBEN2LXzF+RS1tVoMQm3CnoDaBoIWWEcwH5JJjbrNJluzenbt7QjhT2/hLBBsLRWz9BXb+GzeJhSY+GHi8N8PMPD/iTGnb/rJSc/MLi0vp5czK6tr6RnZzq6rCWBJaISEPZd0HRTkLaEUzzWk9khSEz2nN75+P/NotlYqFwbUeRLQpoBuwDiOgjeRld10VCy9hRWfYEhg81kryLvCoBwdDfOOxou1lc3bBHgPPEueH5EoX+NH17rplL/vptkMSCxpowkGphmNHupmA1IxwOsy4saIRkD50acPQAARVzWT8yhDvG6WNO6E0FWg8Vn9PJCCUGgjfdArQPTXtjcT/vEasO6fNhAVRrGlAJos6Mcc6xKNccJtJSjQfGAJEMnMrJj2QQLRJL2NCcKZfniXVw4JzXDi6MmmcoQnSaAftoTxy0AkqoUtURhVE0D16Qi/o1Xqwnq03633SmrJ+ZrbRH1gf39VonKo=</latexit> mX

i=1

a(↵)i qi = 0



Summary

•Significant progress of analytic Feynman evaluation

•Canonical differential equation

•Computational algebraic geometry applications:


                      Lift method to find UT integrals

                      Syzygy method to simplify IBP reduction coefficients

Vielen Dank!
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2-loop 5-point +++++ pure-YM amplitude

Badger, Frellesvig, YZ, 2013 

Badger, Mogull, Ochirov, O’Connell 2015
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2-loop 5-point +++++ pure-YM amplitude
numerator degree-5 IBP needed (impossible by current analytic IBP method)

indirect finite-field fitting for the amplitude (after IBP) is applicable

All weight-3, weight-4 part of the amplitude cancels out

H(2) =
∑

S5/ST1

T1H(2)
1 +

∑

S5/ST13

T13H(2)
13

I123;45 = Li2 (1� s12/s45) + Li2 (1� s23/s45) + log2 (s12/s23) + ⇡2/6 .

Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, YZ, Zoia

PhysRevLett. 123 (2019) no.7, 071601 
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Infrared structure

Z(sij, ✏) = exp g2
✓
D0

2✏2
� D

2✏

◆
A(sij, ε) = Z(sij, ε)Af(sij, ε)

D0 =
X

i6=j

~Ti · ~Tj , D =
X

i6=j

~Ti · ~Tj log

✓
�

sij

µ2

◆
,

(Catani’s dipole formula 98)

Ti is the adjoint action of su(Nc) Lie algebra.
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More references

UT integral search 
Henn 1412.2296


Chicherin, Gehrmann, Henn, Wasser, YZ and Zoia, 1812.11160 

Boundary value 
Gehrmann, Henn, Lo Presti, 1807.09812


Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 1809.06240

Conformal anomaly

for Feynman integrals 

Chicherin, Henn, Sokatchev 1804.03571

IBP with algebraic geometry 
Gluza, Kajda, Kosower, 1009.0472 


Larsen, YZ, 1511.01071

                      Boehm, Schoenemann, Georgoudis Larsen, YZ, 1805.01873 
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http://arxiv.org/abs/arXiv:1009.0472

