Twofold symmetry of c-axis resistivity in topological kagome superconductor $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$ with in-plane rotating magnetic field

Ying Xiang ${ }^{1}$, Qing Li'1, Yongkai Li²,Wei Xie ${ }^{1}$, Huan Yang ${ }^{1}$, Zhiwei Wang ${ }^{2}$, Yugui Yao ${ }^{2}$, Hai-Hu Wen ${ }^{1}$
${ }^{1}$ Center for Superconducting Physics and Materials, Department of Physics, Nanjing University, 210093.
${ }^{2}$ Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, Beijing Institute of Technology.
Abstract: Materials with a kagome lattice structure can host a rich variety of exotic states including spin liquid, spin density wave, charge density wave and superconductivity. Recently, a new family of kagome metals $\mathrm{AV}_{3} \mathrm{Sb}_{5}(A=\mathrm{K}, \mathrm{Rb}$, or Cs$)$ has been discovered, which attracted tremendous attention. The nematic electronic state breaks the symmetry of the crystal structure in many strongly correlated electron systems, including cuprates, iron-based superconductors. Superconductivity with twofold symmetry seems to be a common feature in topological superconductors, which is explained theoretically as a consequence of superconducting order parameter with odd parity. We measured the c-axis resistivity $\left(\rho_{c}\right)$ with in-plane rotating magnetic field, we observe a twofold rotational symmetry of angular dependent $\rho_{c}(\theta)$ both in the superconducting state and the normal state of the topological kagome metal $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$. In addition, these two kinds of orders are orthogonal to each other in terms of the field direction of the minimum resistivity. These observations will shed new light in the study of this fascinating kagome and topological material.

Magnetic field evolution of the twofold symmetry

Six-fold symmetry of the lattice
The two kinds of $\rho_{c}(\theta)$ curves below and above 2.4 T are orthogonal to each other in terms of the field direction of the extremum resistivity.

Magnetic-field induced phase reverse of $\rho_{c}(\theta)$ curves with twofold symmetry

Pippard equation:

$$
\xi=\frac{\hbar v_{\mathrm{F}}}{\pi \Delta}
$$

Ginzburg-Landa theory: $H_{\mathrm{c} 2}=\frac{\Phi_{0} \pi}{2 \hbar^{2} v_{\mathrm{F}}^{2}} \Delta^{2}$

$$
H_{\mathrm{c} 2} \propto \frac{\Delta^{2}}{v_{\mathrm{F}}^{2}}
$$

twofold feature of the SC gap

In the presence of a magnetic field, the mobile electrons will possess a circular momentum in the plane perpendicular to the field direction. The c-axis resistivity should contain the contribution of the in-plane electronic states or the in-plane mobility component along the direction perpendicular to the magnetic field.

In 3D CDW configuration, a π phase shift between neighboured V -Sb kagome layers, in addition to the inter-layer coupling between the neighboured layers lower the six-fold symmetry to a twofold in the normal state.

Conclusions

- A twofold symmetry of superconductivity is observed in the superconducting state in $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$;
- A unique twofold symmetric resistivity with in-plane magnetic field is observed above T_{c}, together shown is a threefold or sixfold resistivity oscillation above T_{c};
- These two orders are orthogonal to each other in terms of the field direction of the minimum resistivity;
- Our results shed new light in understanding non-trivial physical properties of $\mathrm{CsV}_{3} \mathrm{Sb}_{5}$.

