Contribution ID: 48 Type: not specified

Optomechanical atomic force microscope

Friday, 10 December 2021 16:20 (5 minutes)

In the scanning probe microscope system, the weak signal detection of cantilever vibration is one of the important factors affecting the sensor sensitivity. In our current work, we present a novel design concept for an atomic force microscope (AFM) combined with optomechanics with an ultra-high quality factor and a low thermal noise. The detection system consists of a fixed mirror placed on the cantilever of the AFM and pump-probe beams that is equivalent to a Fabry–Perot cavity. We realize that the AFM combined with an optical cavity can achieve ultra-sensitive detection of force gradients of 10^-12 N m $^-1$ in the case of high-vacuum and low effective temperature of 1 mK, which may open up new avenues for super-high resolution imaging and super-high precision force spectroscopy.

Primary authors: Mr HE, Fei (SJTU); Prof. ZHU, Kadi (SJTU)

Presenter: Mr HE, Fei (SJTU)

Session Classification: Poster Session