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Introduction
— Quark-gluon plasma, relativistic heavy-ion collisions

Flow and collective properties
— Yields, spectra, flow, fluctuations, correlations, decorrelations

Jets and jet-medium interaction
— High p; hadrons, heavy quarks/hadrons, full jets, medium response

Small systems
— Flow and jet quenching

Summary



Heating up the matter

How does the matter change when heated? Tel= water stearm

Increasing temperature increases the kinetic
energies of DOFs. - -
add heat add heat

High enough temperature can break the larger
structures (DOFs) by activating more
fundamental DOFs.

Breaking molecules and chemical bonds: 103K,
burning, flame, torch

Breaking atoms (to get QED plasma): 10°K,
ironization

Breaking nuclei: 108-10°K, nuclear reactions

Breaking nucleons (to get QGP): 101%K,
relativistic nuclear collisions

kp =862x105%L 1eV = 1.16 X 10*K
B K



Heating up the matter with relativistic
heavy-ion collisions
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“Standard Model” of RHIC & LHC
heavy-ion collisions
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Probes of QGP in heavy-ion collisions
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Flow and collective properties



Particle distribution in longitudinal direction
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How high density?

6 * 10 kg * (3 % 10°m / 5)°
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Particle distribution in transverse plane

e Particle production is not azimuthally symmetric.
 The azimuthal anisotropy can be analyzed by Fourier decomposition:

dv

d_gp oC 1+;2Vn cos[ngo—‘l’n



Elliptic flow v, depends on collision geometry

> - ALICE Preliminary, Pb-Pb events at \ s, = 2.76 TeV
0.1 guElBEEI g0,
'.-Duﬁcnuc
l.....ll.lll l--..
"I "
0.05 . |
& o v, (charged hadrons)
F o o V,{2} (|An| > 0)
;;‘F ] 5 v,(2) (1An] > 1)
» = vald)
" =] v,{6}
- =] v,{8]
0 N el EPEFEPEE EPEPEPE EPEEE el S A
0 10 20 30 40 50 60 70 80

centrality percentile

» Strong elliptic flows depending on collision centrality (system size & geometry)



The origin of elliptic flow

. (v - =) . p. — D,
eccentricity &, = elliptic flow v, = { — 5
p’+ p’

Relativistic hydrodynamics: the interaction among QGP constituents translates
initial geometric anisotropy to final state momentum anisotropy.

=> QGP is a strongly-coupled fluid



v,in,

Number of constituent quark (NSQ) scaling
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Coalescence of thermal partons from QGP can naturally explain the NSQ scaling of
v, and the enhancement of baryon-to-meson ratio at intermediate p;.




Initial-state fluctuations and final-state flows

* Event-by-event initial state density and geometry fluctuations are translated into
final state anisotropic flows via hydrodynamic evolution.

— | ATLAS 20-30%, EP

narrow: 1/s(T)
wide: n/s=0.2

dN dN
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prdprdyde ~ 2mprdprdy o pr, y)cos{n[¢ — ¥y (pr, )]}

Alver and Roland, PRC 2010; GYQ, Petersen, Bass, Muller, PRC 2010; Staig, Shuryak, PRC 2011;
Teaney, Yan, PRC 2011; Gale, Jeon, Schenke, Tribedy, Venugopalan, PRL 2012; etc.



Longitudinal fluctuations and decorrelations

V2 ¢2 ‘Dz

. . n direction
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Petersen, Bhattacharya, Bass, Greiner, PRC 2011; Xiao, Liu, Wang, PRC 2013; Pang, GYQ, Roy,
Wang, Ma, PRC 2015; Pang, Petersen, GYQ, Roy, Wang, EPJA 2016; Jia, Huo, PRC 2014; CMS,
PRC 2015; Jia et al, JPG 2017; ATLAS EPJC 2018; Bozek, Broniowski, PRC 2018; Wu, Pang, GYQ,

Wang, PRC 2018; etc.



Longitudinal decorrelations
in different collision energies and systems
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Wu, Pang, GYQ, Wang, PRC 2018



Fluidity

How the fluid flows depends on its viscosity.



Shear viscosity

Shear viscosity 7 measures the resistance to shear flow.

v dimension
boundary plate
(2D, moving) velocity, u —>F,
-

shear stress, t

dut F au

i b= X - X
gradient, i — = 77

fluid

boundary plate (2D, stationary)

Shear viscosity n measures the ability of momentum transport between
different parts of the system.

From kinetic theory, it is related to the strength of the interactions among
the constituents of the system.

1
~ — nAD
n 5 D



Viscosities of some fluids

Air 1.8*10°
Water 8.9*10%
Milk 1.8*1073
Olive Qil 0.04
Honey 10
Peanut Butter 250
Pitch 2*108

Quark-Gluon Plasma 27?7



Most perfect liquid
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Bernhard, Moreland, Bass, Nature Physics 2019



Phases of strong-interaction matter

£ Farly Universe

1 LHC Experiments
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Critical Point

Hadron Gas

The Phases of QCD

Superconductor

Nuclear
Matter Neutron Stars
R

900 MeV
Baryon Chemical Potential

Low T & ug => hadrons
(hadron matter)
T.=155MeV => hadron
matter melts into quark-
gluon plasma

Very high T => early
Universe.

QGP can be obtained by
colliding two nuclei at
extremely high energies
(relativistic heavy-ion
collisions)

As E_,, increases, S
increases, Ny is unchanged,
S/Ng, s/ng & T/ ug increase



CLvisc (3+1)-D hydrodynamics for BES energies
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(3+1)-dimensional relativistic viscous hydrodynamics model CLVisc2.0 includes
baryon conservation and Israel-Stewart-like diffusion, NEOS-BQS equation of state,

EbE initial conditions, SMASH hadron cascade.
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CLvisc (3+1)-D hydrodynamics for BES energies
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CLVisc2.0 can provide a good description of identified particle spectra, mean
transverse momenta and anisotropic flows for different centralities and over a wide
range of collision energies (7.7-62.4 GeV).

The relative fluctuations of v, are not sensitive to collision energies, which indicates
that the flow fluctuations are mainly driven by initial states

Wu, GYQ, Pang, Wang, 2107.04949



Jets and jet-medium interaction



Jet quenching

leading
particle

N+N A+A: jet quenching

Jets and jet-medium interaction (jet quenching) provide valuable tools to probe
hot & dense QGP in heavy-ion collisions (at RHIC & LHC):

(1) jet energy loss (2) jet deflection and broadening (3) modification of jet
structure/substructure (4) jet-induced medium excitation



Nuclear modifications of large p; hadrons
Raa for different particles
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Color & flavor dependences of parton
energy loss: AE > AE ;> AE > AE?



Leading hadron production in pp collisions
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terms of PDF & FF, and short-distance parts describing hard interactions of partons.




Leading hadron production in AA collisions
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Hadron productions in pp collisions @ NLO
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Linear Boltzmann Transport (LBT) Model

Boltzmann equation: P1 -0 fr (if'l-Pl) = £ C [fl]

Elastic collisions: Ty iy = 2 ( d;{}? / ?{’3 /( );”4
- ZEl 2 ZEQ 27 2E3 2T 2E_1

x fof2) |1 fa(i — )] [1 % fa(f2 +F)

x (2m)25@ (p1 + pa — p3 — pa)| Mia— 34

Pe] =1 - oAl Matrix elements taken from LO pQCD

Inelastic collisions: (Ng)y= T, At = At drdl-? %
rh{fﬂj_df
P. -1 — 6)_<N5’> Radiation spectra taken from higher-twist
inel formalism: Guo, Wang PRL 2000; Zhang, Wang,
Wang, PRL 2004; Zhang, Hou, GYQ, PRC 2019.
. . . _ -/ At

Elastic + Inelastic: P, =1-c€ =P, +F, ,—F,F

He, Luo, Wang, Zhu, PRC 2015; Cao, Luo, GYQ, Wang, PRC 2016, PLB 2018; etc.



Flavor hierarchy of jet quenching
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A state-of-art jet quenching framework (NLO-pQCD + LBT + Hydrodynamics)
Quark-initiated hadrons have less quenching effects than gluon-initiated hadrons.

Combining both quark and gluon contributions, we obtain a nice description of
charged hadron & D & B meson R,, over a wide range of p;.

Xing, Cao, GYQ, Xing, PLB 2020



Full jet evolution & energy loss in medium
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Vitev, Zhang, PRL 2010; GYQ, Muller, PRL, 2011; Casalderrey-Solana, Milhano, Wiedemann,
JPG 2011; Young, Schenke, Jeon, Gale, PRC, 2011; Dai, Vitev, Zhang, PRL 2013; Wang, Zhu,
PRL 2013; Blaizot, lancu, Mehtar-Tani, PRL 2013; etc.



Jet evolution & medium response
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Signal of jet-induced flow in jet shape
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The contribution from the hydro part is quite flat and finally dominates over the
shower part in the region from r = 0.4-0.5.
Signal of jet-induced medium excitation in full jet shape at large r.

Chang, GYQ, PRC 2016; Tachibana, Chang, GYQ, PRC 2017; Chang, Tachibana, GYQ, PLB 2020



Enhancement of baryon-to-meson ratios around
the jet as a signature of medium response
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We use jet-particle correlations to study baryon and meson production around jets.

We find a strong enhancement of B/M ratios for associated particles
p; around the quenched jets, due to the coalescence of jet-excited m

Luo, Mao, GYQ, Wang, Zhang, 2109.14314

at intermediate
edium partons.



Small systems



Flow in small collision systems

Plenty of evidences for strong collectivity in small collision systems
p+p p+Pb Pb+Pb
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What is the dynamical origin of the observed collectivity in small systems?



y (fm)

Formation of mini-QGP?
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The flow harmonics can be viewed as the final-state effect due to hydrodynamic
evolution of small collisional systems with certain amount of initial anisotropy.

Bozek, Broniowski, Torrieri, PRL 2013; Bzdak, Schenke, Tribedy, Venugopalan, PRC 2013;
GYQ, Muller, PRC 2014; Bzdak, Ma, PRL 2014; Weller, Romatschke, PLB 2017; Zhao,
Zhou, Xu, Deng, Song, PLB 2018; etc.



Signature in hard probes?

27.4 pb”’ (pp) + 35 nb™ (PPb) + 404 ub” (PbPb) 5.02 TeV
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 Up to now, there is no jet quenching observed in pA collisions



Or initial state effect?

e ¥ 2GeV 4 5 GeV

P

—4— 3 0eV  —4— 10 GeV
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Q2 [GeV?)

In color glass condensate (CGC) dilute-dense factorization framework or the
saturation formalism, interactions between partons originated from the
projectile proton and dense gluons inside the target nucleus can provide
significant amount of collectivity (correlations) among partons.

Dusling, Mace, Venugopalan, PRL (2018), 1705.00745; PRD (2018), 1706.06260; etc.



Signature of partonic DOFs in small systems
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* By combining hydrodynamic simulation and jet quenching, we develop the hybrid
hydro+coalescence+fragmentation hadronization mdodel

* To reproduce the observed approximated number of constituent quark (NCQ) scaling of hadron v,,
it is necessary to include the contribution from the constituent quark coalescence at intermediate
pT (below 6GeV).

*  This result shows the importance of partonic degrees of freedom and supports the formation of
mini QGP in high multiplicity p-Pb collisions at the LHC.

Zhao, Ko, Liu, GYQ, Song, PRL 2020



Flow of heavy hadrons in small systems
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Large values of elliptic flow v, for J/ mesons and for D° mesons in pPb collisions at the LHC,
although they are slightly less than the v, values of light hadrons

Heavy quarks in general do not flow as much as light quarks or gluons due to large masses.

The final state interactions can only provide a small fraction of the observed v, for J/¥ mesons
[Du, Rapp, JHEP 1903 (2019) 015]



J/¥ v, from initial state correlations

Q )
J/¥ production together with
a reference light quark (which g Y
fragments into light hadrons) Q Q
q » q q > q

Based on the dilute-dense
factorization in color glass

condensate (CGC) and the V2 [J/LP] = VéA [J/LIJ, ref] / V2 [ref]

color evaporation model (CEM)
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Zhang, Marquet, GYQ, Wei, Xiao, PRL 2019; Zhang, Marquet, GYQ, Wei, Shi, Wang, Xiao, PRD 2020



Asymmetric longitudinal flow decorrelations in pA collisions
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Flow decorrelations in proton directions are larger than those in nucleus directions.

Wu, GYQ, 2109.03512



Quenching and flow in different systems

14 0.6 2 0.2
D’ 5<p_<8GeV/! D° 8<p_<16GeV/ ° O- = 0 0- =
1.2 Pb-P: T\{%:es.ocz TeV 0.5+ — PbPb 8,502 TeV D OO/ {81y 265 TN 0.15- i \OSNN Sns
....... Xe-Xe |[5,,=5.44 TeV mme Xe-Xe |5y, =5.44 TeV 15 — 0-10% : — 0-10%
LIS wmme ARAT |[5,,=5.85 TeV o4 gf-gf 5 525:? LeV ' ~es 30-40% 0.1- ~m 30-40%
20.83‘ —— 00 |s,=65TevV & T PP Te -=== 60-80% -=+= 60-80%
B gl " oMU wosnadonng | NO3F R 5 sassmsaas 50,050
0.4 02~ O
0.2 0.14” 0.05-
L L L L L ! - L | 1 1 | ! L | ! | N1 I 1 ! 1 1 ! 1
% 50 100150200250300350400 % 50 100150200250300350400 09 20 40 60 80 700 OB 5 10 15 20 25 30 35
Noar™ <N, P,(GeV) P(GeV)
= D’ 8<p_<16GeV/ 06 B° 8<p <16GeV/ 2 0 02
<p_<16GeV/c P eV/ic i i 0 s
1.2 Pb-Pb Vg@:&og TeV 0.5+ e Pb—Pstm=5.02 TeV B0 m G5 Tel 0.15- B 0-0 @'5-5 Tev
f e Xe-Xe (=544 TeV | | e Xe-Xe |[s,,=5.44 TeV 155 — 0-10% — 0-10%
\ < AT-AT $,=5.85 TeV 04 0 e Ar-Ar |[s,,=5.85 TeV ' we 30-40% 0.1- - 3040%
50.8%. —— 0-0 |5, =65 TeV 5 —— 0-05,,=6.5 TeV < ===~ 60-80% - --=- 60-80%
Cog N\ e | K03 & t gy 008
0.4 0.2 o 5j/\ o7
02 0f " ' 005

<N _>

%750 100150200250300350400 %55 100 750200250300350400 O35 40 60 80 qo0 b 5 10 15 20 25 30 3
part Noar™ P(GeV) P(GeV)

D/B meson R,, and v, have good scaling behaviors with respect to the systems size.
Our study indicates R, ~ 1 in pA is mainly due to small system size, and predicts
sizable jet quenching in OO collisions.

Li, Xing, Wu, Cao, GYQ, EPJC 2021, Liu, Xing, Wu, GYQ, Cao, 2107.01522



Summary

e Soft probes

— Spectra, flow, fluctuations, correlations, decorrelations, etc. for different
collision energies and systems

— Explore the dynamical evolution and collective properties of the QGP at higher
precision

 Hard probes
— Heavy & light flavor jet observables: Ry,, v,, full jet, jet-particle correlation, etc.

— Characterize macroscopic properties and microscopic structures of QCD
matter

 Small systems
— Jets and flow
— Understand the dynamical origins of the collectivity in small and large systems
— Search for the smallest QGP and the disappearance of QGP



Thank you!
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Anisotropy: Fourier decomposition
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Shear viscosity

In At = A/, there are on average %nAAy particles frombothy +Adandy — 4
passing through the plane at y from above and below.
The net momentum passing through the plane:

Ap, = %ni;ﬂl},m[ux(y +A) —u(y—A] = %nﬂzﬂ},m ‘E"
The drag force: "‘y
Ex _ % _ 1?1.-1;4},?111? du, y + A ux(y + /1)
At 3 dy —
1/6 * nUAtA,
The shear tensor: X
B Loamp 2 = 2 g )
Ay, 3 dy n dy 1/6 * nDAtA,

The shear viscosity: y—A I— u (y—4)
n= gnﬂmﬁ = %nlﬁ >

X



Relativistic hydrodynamics

* Energy-momentum conservation:
0, T* =0
THY = gUHUY — (P + AR + thv

e Equations of motion (Israel-Stewart viscous hydrodynamics):
¢=—(e+P+Io+ gy,

(e+P+IDU*=V*P + 1D+ U,n*’ — ALV, H

T— _ 1 I
M=-— [n + (6 + TI{T3, (m U“)]

. 1 .

e Equation of state: P = P(g)

arXiv:0902.3663; arXiv:1301.2826; arXiv:1301.5893; arXiv:1311.1849; arXiv:1401.0079...



Initial conditions before hydro
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GYQ, Petersen, Bass, Muller, PRC, 2010



Pitch Drop Experiment
“Time | vent | puraion (vear)

1927 Hot pitch poured

1930.10 Stem cut

1938.12 15t drop fell 8.1

1947.2 2nd drop fell 8.2

1954.4 3" drop fell 7.2

1962.5 4t drop fell 8.1

1970.8 5t drop fell 8.3 e
1979.4 gth drop fell 8.7 The University of Queensland pitch =

y drop experiment, featuring its then-
1988.7 7t drop fell 9.2 current custodian, Professor John
2000.11 sth drop fell 12.3 Mainstone (taken in 1990, two years
' P ' after the seventh drop and 10 years

2014.4 gth drop fell 13.4 before the eighth drop fell).

Guinness World Record

Edgeworth, Dalton, Parnell, Eur. J. Phys. (1984) 198. for the longest-running laboratory
experiment



Most perfect fluid
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RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted — raising many new questions

April 18,2005

TAMPA, FL — The four detector groups conducting research at the Relativistic Heavy lon Collider (RHIC) —
a giant atom "smasher” located at the U.S. Department of Energy's Brookhaven National Laboratory — say
they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of
atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-
reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of
behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion

collisions appears to be more like a liquid.

Collectivity!
Strongly-coupled!
Perfect!

[N .
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National Laboratory

Newsroom Photos + Videos FactSheets Lab History News Categories

By Karen McNulty Walsh

snare: (3 (3
RHIC's Perfect Liquid a Study in Perfection

Systematic analysis of particle flow in heavy ion experiments suggests that RHIC's
shear viscosity is close to ideal limit

June 17,2013

Space is supported by its audience. When you purchase through links on our site, we may earn an affiliate
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1st matter in the universe may have been a
perfect liquid

By Mara Johnson-Groh published June 05, 2021

Scientists have recreated the first matter that appeared after the
Big Bang in the Large Hadron Collider.

0000060



Longitudinal fluctuations

* The initial states are fluctuating also in longitudinal (rapidity) directions
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* Longitudinal fluctuations can lead to rapidity-dependent particle yield and v,

* The rapidity dependence (decorrelation) of v, provide another tool to probe the
QGP properties

Gabriel et al. PRL 2016; Pang, Petersen, Wang PRC 2018; Wu, Pang, GYQ, Wang, PRC 2018



CLvisc (3+1)-D hydrodynamics for BES energies

ve{4}/va{2}

0.0

14.5 GeV -
19.6 GeV

62.4 GeV

30 40 50 60 70
Centrality

The relative fluctuations of v,
are smallest in mid-central
collisions, and become larger in
central and peripheral
collisions.

In mid-central collisions, v, is
more dominated by the elliptic
collision geometry.

In central and periperal
collisions, v, is more
dominated by initial state
fluctuations.

The relative fluctuations of v,
are insensitive to collision
energy (consistent with STAR
preliminary data)

Wu, GYQ, Pang, Wang, 2107.04949



Global and local A polarization at BES energies
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Medium response
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Jets lose energy into medium, which can induce medium excitations.

The direct detection of medium response is extremely difficult since the collective
flow of the dynamic medium can significantly distort the Mach cone structure.

GYQ, Majuder, Song, Heinz, Phys. Rev. Lett. 103, 152303 (2009)
Tachibana, Chang, GYQ, Phys. Rev. C 95, 044909 (2017)



Elastic and inelastic interactions

Hard parton
Hard parton

(w)k,)
‘—\‘b
Elastic (collisional) Inelastic (radiative)
T (7 p,..)=0 T (7.5, )="
dedk’dt dewdk’dt
Bjorken 1982; Bratten, Thoma 1991; BDMPS-Z: Baier-Dokshitzer-Mueller-Peigne-
Thoma, Gyulassy, 1991; Mustafa, Schiff-Zakharov
Thoma 2005; Peigne, Peshier, 2006; ASW: Amesto-Salgado-Wiedemann
Djordjevic, 2006; Wicks et al (DGLV), AMY: Arnold-Moore-Yaffe (& Caron-Huot, Gale)
2007; GYQ et al (AMY), 2008; ... GLV: Gyulassy-Levai-Vitev (& Djordjevic, Heinz)

HT: Wang-Guo (& Zhang, Wang, Majumder)



Medium-induced inelastic (radiative) process
[

Zhang, Hou, GYQ, PRC 2018
& PRC 2019; Zhang, GYQ,
Wang, PRD 2019.

+ other 20 diagrams
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Medium-induced gluon emission beyond collinear expansion & soft emission limit with
transverse & longitudinal scatterings for massive/massless quarks



Parton energy loss in LBT
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He, Luo, Wang, Zhu, PRC 2015; Cao, Luo, GYQ, Wang, PRC 2016 ; PLB 2018; etc.



Flavor hierarchy of jet quenching

1 | 1 1 1 1 1 1 L1 I
0 10 100

pr (GeV)

A state-of-art jet quenching framework (NLO-pQCD + LBT + Hydrodynamics)

At p; > 30-40 GeV, B mesons will also exhibit similar suppression effects to
charged hadrons and D mesons, which can be tested by future measurements.

Xing, Cao, GYQ, Xing, PLB 2020



Heavy flavor R,, and v, puzzle
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Eur.Phys.J.C 76 (2016) 3, 107



D meson R,, & v, from low to

high p;
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Xing, GYQ, Cao, 2112.15062




Heavy quark potential from open HF R,, & v,
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Xing, GYQ, Cao, 2112.15062



Perturbative and non-perturbative
interaction between heavy quark and QGP
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Generalized k; family of jet reconstruction algorithms

* (1) Consider all particles in the list, and
compute all distances d.; and dij

dJ’B — p?,pl
* (2) For particle i, find mln(du, 8) 20 Aﬁfj
djj = min ([77 i Dy j) }PZ

* (3) If min(d, d;;) = dig, declare particle
i to be a jet, and remove it from the AR = (b — )P + (n. —n.)°
list of particles. Then return to (1) ” 4, ¢J) , 77])

* (4) If min(d, d;)=d;, recombine i & j
into a single new partlcle Then return
to (1) p=1: k; algorithm

p=0: Cambridge/Aachen algorithm

p=-1: anti-k; algorithm

* (5) Stop when no particles are left



