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Abstract: The asymptotic formulae to describe the probability distribution of a test
statistic in G. Cowan et al.’s paper [1] are deeply based on Wald’s approximation [2].
Wald’s approximation is valid if the sample size is big enough. It works well in most cases
of searching for new physics. In this work, the asymptotic formulae are improved with
considering the sub-leading contributions due to limited sample size and non-negligible
signal-to-background ratio. The probability distribution of the test statistics from the new
asymptotic formulae is closer to that from MC simulations. Let ∆UL(old/new) denote the
difference between the upper limit from the old/new formulae and that from the toy MC
method. Based on the test statistics q̃µ and the examples presented in this work, we find
∆UL(new) is 57-81% of ∆UL(old). In addition, a conjecture about the standard deviation,
proposed in G. Cowan et al.’s paper, is also clarified.
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1 Introduction

Searching for new physics is always the goal for most experimenters in particle physics,
especially after the discovery of the Higgs boson [3, 4]. Once a measurement is done, it
is important to report the results in a precise and well-accepted way. One often reports
two things if no significant signal is observed. One is the probability that the observation
is due to the fluctuation of known backgrounds. This is used to represent the statistical
significance of a signal and to establish its discovery. The other is the parameter space about
the new signal that the measurement can exclude for a given confidence level (C.L.). To
interpret the results, we usually build a test statistic based on the likelihood ratio, which is
the most powerful discriminant. To find the statistical significance and the exclusion limits,
we need to know the probability distribution of the statistical test with many different
signal strengths (or other parameter of interest). We can resort to toy Monte Carlo (MC)
simulation. But it is usually computationally expensive.

Fortunately, G. Cowan et al. have found asymptotic formulae [1] to describe the distri-
bution of the likelihood ratio tests if the sample size is big enough. Therefore, one can easily
obtain the expected statistical significance and exclusion limits for a new signal based on the
idea of “asimov” dataset [1]. The validity of the asymptotic formulae is due to a theorem by
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Table 1. Summary of the test statistics based on the likelihood ratio

Test statistic Purpose
t0 to establish the discovery of a signal
tµ to set a confidence interval of a signal at a given level
qµ to set an upper limit of a signal at a given level
q0 to establish the discovery of a positive signal
t̃µ to set a confidence interval of a positive signal at a given level
q̃µ to set an upper limit of a positive signal at a given level

Wald [2] and the condition is that the sample size is sufficiently big. The asymptotic formu-
lae are believed to work if the number of event is over 5. Recently, the author has finished a
study of the feasibility to search for leptoquarks in Pb-Pb ultra-peripheral collisions [5] and
the background level in that case is very low (the expected number of background events
is much less than 1). It is the direct motivation of the current work to explore the limits
where the asymptotic formulae work. During the exploration, new asymptotic formulae are
found from a different perspective and show better agreement with the toy MC simulation
results than the old ones in Ref. [1].

In Sec. 2, we will have a brief review about the test statistic and the old asymptotic
formulae. In Sec. 3, we will elaborate two improvements and present the new formulae.
The two sets of asymptotic formulae are compared using two examples in Sec. 4. Some
discussions about the standard deviation are presented in Sec. 5. Sec. 6 is a short summary.

2 Review of the test statistic and the asymptotic formulae

We will review the test statistics and the asymptotic formulae according to Ref. [1]. To test
a hypothesis with the signal strength µ, we consider the likelihood ratio

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
, (2.1)

where θ denotes a set of nuisance parameters; µ̂ and θ̂ are the optimal values to maximize
the likelihood function; ˆ̂

θ(µ) are the optimal values with µ fixed and can be see functions
of µ. Based on this ratio, six test statistics (t0, q0, tµ, t̃µ, qµ and q̃µ) are defined for different
purposes. They are summarized in Tab. 1.

For example, to set an upper limit and consider the constraint µ > 0 (assuming that
the signal contribution is positive to the observed number of events), the recommendation
is q̃µ.

q̃µ =


0 µ̂ > µ ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ ≥ µ̂ ≥ 0 ,

−2 ln L(µ,
ˆ̂
θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(2.2)
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To reject the background-only hypothesis (namely, µ = 0), we use the test statistic q0.

q0 =

−2 ln L(0,
ˆ̂
θ(0))

L(µ̂,θ̂)
µ̂ ≥ 0 ,

0 µ̂ < 0 .
(2.3)

The asymptotic formulae in Ref. [1] to describe the probability distribution of these
test statistics are based on Wald’s theorem [2]. It says that the logarithmic likelihood ratio,
seen as a random variable, satisfies the following relation

tµ ≡ −2 lnλ(µ) =
(µ̂− µ)2

σ2
+O(

1√
N

) , (2.4)

where µ̂ abides by a Gaussian distribution with a mean µH and standard deviation σ; and
N represents the data sample size. Here it is worth mentioning that N is basically the
background sample size if we are searching for new physics signals. The standard deviation
σ can be obtained from either the Fisher information matrix (second-order derivatives of
the logarithmic likelihood function) [8, 9] (denoted by σ(d2L)) or from Wald’s theorem
(Eq. 3.7) based on an Asimov dataset (denoted by σ(Wald)). In the large sample limit, we
can ignore the term O( 1√

N
) in Eq. 3.7 (we call it “Wald’s approximation” throughout this

paper). The asymptotic relations between q̃µ (q0) and µ̂ are

q̃µ =


0 µ̂ > µ ,

(µ̂−µ)2
σ2 µ ≥ µ̂ ≥ 0 ,

µ2−2µµ̂
σ2 µ̂ < 0 .

, (2.5)

and

q0 =

{
µ̂2

σ2 µ̂ ≥ 0 ,

0 µ̂ < 0 .
, (2.6)

from which the probability distribution function (PDF) of q̃µ (q0) can be easily obtained
via µ̂.

3 New asymptotic formulae

3.1 Asymptotic form of tµ as a function of µ̂

Throughout this paper, we use µ′, µ̂, µ and µH to denote the true value of the signal
strength, the best-fit value from the maximum likelihood estimation, the test value we
want to see if it is compatible with data, and the hypothesized value in an asimov dataset,
respectively. First of all, we derive Wald’s approximation following Wald’s idea roughly in
the case of no other nuisance parameters. Then we will explain the extension.

Although µ′ is unique and will not change by any means, different µ′s mean different
data. So we can see −2 lnL as a function of µ′. Writing −2 lnL(µ′) as f(µ′), we perform
the Taylor expansion around µ̂ and µ.

f(µ′) = f(µ̂) + f (1)(µ̂)(µ′ − µ̂) +
1

2
f (2)(ξ[µ̂,µ′])(µ

′ − µ̂)2 , (3.1)

f(µ′) = f(µ) + f (1)(µ)(µ′ − µ) +
1

2
f (2)(ξ[µ,µ′])(µ

′ − µ)2 , (3.2)

f (1)(µ) = f (1)(µ̂) + f (2)(ξ[µ̂,µ])(µ− µ̂) , (3.3)
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where f (1)(ξ) and f (2)(ξ) denote the first and second derivative at ξ respectively; ξ[a, b]
denotes a value between a and b used in the Taylor expansion remainders. Assuming
f (2)(ξ) is always positive and denoting 1

2f
(2)(ξ) by 1

σ2(ξ)
, we have

tµ = f(µ)− f(µ̂) (3.4)

=
(µ̂− µ′)2

σ2(ξ[µ̂,µ′])
− (µ− µ′)2

σ2(ξ[µ,µ′])
+ 2

(µ− µ′)(µ− µ̂)

σ2(ξ[µ̂,µ])
(3.5)

=
(µ̂− µ′)2

σ2(ξ[µ̂,µ′])
− (µ− µ′)2

σ2(ξ[µ,µ′])
+ 2

(µ− µ′)(µ− µ′ + µ′ − µ̂)

σ2(ξ[µ̂,µ])
(3.6)

=
(µ̂− µ′)2

σ2(ξ[µ̂,µ′])
+ (2

σ2(ξ[µ,µ′])

σ2(ξ[µ̂,µ])
− 1)

(µ− µ′)2

σ2(ξ[µ,µ′])
− 2

(µ− µ′)(µ̂− µ′)
σ2(ξ[µ̂,µ])

. (3.7)

In the limit of large number of observations, Wald’s theorem shows that all three σs are
the same (denoted by σ). We come to Wald’s approximation

tµ = −2 lnλ(µ) =

(
µ̂− µ′

σ
+
µ′ − µ
σ

)2

=
(µ̂− µ)2

σ2
, (3.8)

where µ̂ abides a Gaussian distribution with the mean µ′ and the standard derivation σ.
In practice, it is better to use σ = σ(Wald) as observed in Ref. [1].

The asymptotic form of tµ as a function of µ̂ from Wald’s theorem satisfies two condi-
tions: 1) tµ ≥ 0 for any µ̂; 2) tµ reaches 0 at µ̂ = µ. Although they are fairly reasonable,
we loosen the latter condition because µ̂ must be close to µ′ from an unbiased estimation
with a large sample and µ̂ would have a small probability to be around µ if µ 6= µ′. The
latter condition is then loosened to be that tµ reaches 0 at µ̂ = µ only if µ = µ′. Requiring
that the minimum value of tµ is 0 in Eq. 3.7, the three σs should satisfies

1

σ2(ξ[µ,µ′])
=

2σ2(ξ[µ̂,µ])− σ2(ξ[µ̂,µ′])
σ4(ξ[µ̂,µ])

. (3.9)

Using this equation, the proposed extension of Wald’s approximation in this work is

tµ = (
µ̂− µH
σ0

+
µH − µ
σ1

)2 , (3.10)

where the true value µ′ is replaced by µH which is the hypothesized signal strength in an asi-
mov dataset because the real value is unknown; σ0 ≡ σ(ξ[µ̂,µH ]) and σ1 ≡ σ2(ξ[µ̂,µ])/σ(ξ[µ̂,µH ]).
µ̂ abides by a Gaussian distribution with mean µH and standard deviation σ. We recom-
mend use σ = σ(d2L), which is obtained from a likelihood fit for the new asymptotic
formulae as we will see in Sec. 5. This choice is different from that in Ref. [1], but seems
more natural.

From a different perspective, we present another motivation for this extension. For a
binned dataset, the likelihood function without any nuisance parameter is

L(µ′) = ΠNbins
i=1 P(ni|bi + µ′si) = ΠNbins

i=1

(bi + µ′si)
ni

ni!
e−(bi+µ

′si) , (3.11)
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where Nbins is the number of bins; bi, si and ni are the number of background events, signal
events and data events in the i-th bin, respectively. The logarithmic likelihood function is
then

lnL(µ′) =

Nbins∑
i=1

ni ln(bi + µ′si)− (bi + µ′si) = −(b+ µ′s) +

Nbins∑
i=1

ni ln(bi + µ′si) , (3.12)

where b ≡
∑Nbins

i=1 bi and s ≡
∑Nbins

i=1 si are the total number of background and signal
events; and the constant terms are omitted. The likelihood ratio is

tµ = −2 ln
L(µ)

L(µ̂)
= 2(µ− µ̂)s− 2

Nbins∑
i=1

ni ln
bi + µsi
bi + µ̂si

. (3.13)

Under the hypothesis with a signal strength µH , ni can be approximated well by bi + µ̂si if
the sample size is large enough and µ̂ is close to µH . We can expand λ(µ) around µ̂ = µH .

tµ ≈ 2(µ− µ̂)s− 2

Nbins∑
i=1

(bi + µ̂si) ln
bi + µsi
bi + µ̂si

(3.14)

≈ C0 + 2C1(µ̂− µH) + C2(µ̂− µH)2 , (3.15)

where C0, C1 and C2 are functions of µH or (and) µ and defined below.

C0 = 2(µ− µH)s− 2

Nbins∑
i=1

(bi + µHsi) ln
bi + µsi
bi + µHsi

,

C1 =

Nbins∑
i=1

si ln
bi + µHsi
bi + µsi

,

C2 =

Nbins∑
i=1

s2i
bi + µHsi

, (3.16)

The parameterization of q̃µ as a function of µ̂ (Eq. 3.15) can be seen as an extension of
Wald’s approximation (Eq. 3.7). It turns to Wald’s approximation by neglecting the terms
of the order of (si/bi)

2 or higher, namely,

C0 =
(µ− µH)2

σ2∗
, C1 =

µH − µ
σ2∗

, C2 =
1

σ2∗
. (3.17)

where σ∗ ≡ 1/
√
C2 is just σ(d2L) for an asimov dataset with signal strength µH in this

simplified model.
Despite its more generality, the new parameterization does not guarantees the non-

negativeness (tµ ≥ 0 by definition). We impose a constraint to solve the drawback. The
smallest value of tµ is C0 − C2

1/C2. We require it to be 0 and replace C2 by C2
1/C0 in

Eq. 3.15 because the C2 term should be affected by high order contribution more than the
C0 and C1 terms. Hence we obtain

tµ = C0 + 2C1(µ̂− µH) +
C2
1

C0
(µ̂− µH)2 , (3.18)
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which is equivalent to the extension of Wald’s approximation in Eq. 3.10 with the following
relations

σ0 =

√
C0

C2
1

, σ1 =
|µH − µ|√

C0
. (3.19)

According to the analysis above, Wald’s approximation in Eq. 3.7 seems to hold well with
two conditions: 1) the number of total events is large so that ni can be approximated well
by bi + µ̂si; 2) the signal-to-background ratio µsi/bi is small so that the difference between
σ0 and σ1 can be neglected (via C0 and C1 in Eq. 3.16 and 3.19). This argument is probably
not solid mathematically, but it seems true in real examples as we will see in Sec. 5. In the
original paper [2] of Wald, it seems that only the first condition is enough.

As C0 and C1 can be calculated explicitly, Eq. 3.16 and 3.19 provide a way to calculate
σ0 and σ1. However, we recommend a different way to obtain σ0 and σ1 using asimov
datasets. Let tAµ (µA) denote the value of tµ obtained from an asimov dataset with the
signal strength µA. According to Eq. 3.10, σ0 and σ1 are then

σ0 = lim
ε→0

|ε|

|
√
tAµ (µH + ε)−

√
tAµ (µH)|

, σ1 = lim
ε→0

|µH + ε− µ|√
tAµ (µH + ε)

, (3.20)

which is similar to the way to obtain σ(Wald) from Wald’s approximation in Ref. [1]

σ(Wald) = lim
ε→0

|µH + ε− µ|√
tAµ (µH + ε)

, (3.21)

where the limitation is used so that it is applicable if µH = µ. In reality, a choice like
ε = 0.01σ(d2L) is reasonable. Comparing Eq. 3.20 and Eq. 3.21, we have σ1 = σ(Wald) in
all cases and σ0 = σ(Wald) only if µH = µ.

3.2 Asymptotic form for µ̂ < 0

For the test statistics, t̃µ and q̃µ, we have to pay attention to the case of µ̂ < 0

− 2 ln
L(µ,

ˆ̂
θ(µ)

L(0,
ˆ̂
θ(0))

= −2 ln
L(µ,

ˆ̂
θ(µ)

L(µ̂, θ̂)
− (−2 ln

L(0,
ˆ̂
θ(0)

L(µ̂, θ̂)
) = tµ − t0 . (3.22)

According to the proposed extension in Eq. 3.10, it is

tµ − t0 = (
µ̂− µH
σ0

+
µH − µ
σ1

)2 − (
µ̂− µH
σ′0

+
µH
σ′1

)2 . (3.23)

For better illustration, q̃µ as a function of µ̂ is plotted in Fig. 1 as well as the predicted
form from Wald’s approximation. The blue curve in Fig. 1 clearly shows two features. This
produces two issues we have to fix reasonably.

Firstly, the asymptotic form above indicates that tµ − t0 may be negative for very
negative µ̂ if σ0 > σ′0. This is unlikely for µ̂ < 0 if the likelihood function is approximately
Gaussian-like around µ̂. On the other hand, a signal strength µ would not be too negative,
otherwise the expected number of events b+ µs is negative and meaningless. The latter is
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Figure 1. The asymptotic form of q̃µ as a function of µ̂. The red curve represents the Wald’s
approximation. The black and blue curves represent the asymptotic form proposed in this work
with different values for the σs. If all σ are equal, Wald’s approximation is restored.

self-evident in the distributions of µ̂ as we will see in Sec. 4. In appendix C, we provide
a finer description of µ̂ by including a sub-leading correction. As tµ − t0 is a second-order
polynomial about µ̂, the extreme value is reached at ∂(tµ−t0)

∂µ̂ = 0, namely,

µ̂L = µH +
σ0σ

′
0

σ1σ′1

µHσ0σ1 − (µH − µ)σ′0σ
′
1

σ′20 − σ20
. (3.24)

To make the asymptotic form consistent with the physics fact, we impose the following
constraint for µ̂ < µ̂L

tµ − t0 = TLµ ≡ (tµ − t0)|µ̂=µ̂L , for σ0 > σ′0, µ̂ < µ̂L , (3.25)

This means that tµ − t0 is fixed at (tµ − t0)|µ̂=µ̂L for µ̂ < µ̂L in the case of σ0 > σ′0.
The second issue is that q̃µ as a function of µ̂ is not continuous around µ̂ = 0 generally.

This is also not consistent with the definition of q̃µ. Noticing that the asymptotic function
based on Wald’s approximation is continuous and smooth around µ̂ = 0. Especially, q̃µ is
a linear function of µ̂ for µ̂ < 0. We can apply the following remedy.

(tµ − t0)|µ̂<0 =

{
( µ̂−µHσ0

+ µH−µ
σ1

)2 − ( µ̂σ0 )2 , µ̂∗ ≤ µ̂ < 0

( µ̂−µHσ0
+ µH−µ

σ1
)2 − ( µ̂−µH

σ′0
+ µH

σ′1
)2 , µ̂ < µ̂∗

(3.26)

Here tµ − t0 is split into two pieces for µ̂ < 0. The piece with µ̂∗ ≤ µ̂ < 0 is a straight line.
It intersects the other piece at µ̂∗. µ̂∗ is calculated to be

µ̂∗ = −
−1
σ′0

+ 1
σ′1

1
σ′0

+ 1
σ0

µH , (3.27)
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and the corresponding value of tµ − t0 is (denoted by T ∗µ)

T ∗µ = (
2µ̂∗ − µH

σ0
+
µH − µ
σ1

)(
−µH
σ0

+
µH − µ
σ1

) . (3.28)

In this way, q̃µ is continuous everywhere and the monotonic relation between q̃µ and µ̂ is
preserved. In Fig. 1, the blue curve clearly indicates the two features; the black dashed
curve is the final asymptotic form proposed in this work; and the black solid curve shows a
great similarity to the prediction from Wald’s approximation if the difference among σs is
small.:w

3.3 Asymptotic formulae for test statistics q̃µ

In this section, we present the cumulative probability distribution (CDF) of the test statis-
tic q̃µ. For the other test statistics, t0, q0, tµ, t̃µ and qµ, their CDFs are presented in
Appendix A.

q̃µ =



0 , µ̂ > µ ,

( µ̂−µHσ0
+ µH−µ

σ1
)2 , 0 ≤ µ̂ ≤ µ ,

( µ̂−µHσ0
+ µH−µ

σ1
)2 − ( µ̂−µHσ0

)2 , µ̂∗ ≤ µ̂ < 0 ,

( µ̂−µHσ0
+ µH−µ

σ1
)2 − ( µ̂−µH

σ′0
+ µH

σ′1
)2 , µ̂ ≤ µ̂∗ and µ̂ ≥ µ̂L if σ0 > σ′0 ,

TLµ , µ̂ < µ̂L if σ0 > σ′0 .

(3.29)

We introduce the following quantities to better describe the features of this asymptotic
form. They are shown in Fig. 1 for better understanding.

1. µ̂L: it is defined in Eq. 3.24 and only introduced if σ0 > σ′0. It indicates that µ̂ cannot
be too negative as explained in last section. q̃Lµ is the value of q̃µ at µ̂ = µ̂L, namely,

TLµ ≡ (
µ̂L − µH

σ0
+
µH − µ
σ1

)2 − (
µ̂L − µH

σ′0
+
µH
σ′1

)2 , for σ0 > σ′0 . (3.30)

2. T 0±
µ : the value of q̃µ at µ̂ = 0±, namely,

T 0−
µ ≡ (

−µH
σ0

+
µH − µ
σ1

)2 − (
−µH
σ′0

+
µH
σ′1

)2 , (3.31)

T 0+
µ ≡ (

−µH
σ0

+
µH − µ
σ1

)2 . (3.32)

3. T ∗µ : the value of q̃µ at µ̂ = µ̂∗. µ̂∗ and T ∗µ are defined in Eq. 3.27 and Eq. 3.28.

4. µ̂R: the value of µ̂ such that q̃µ = 0, namely,

µ̂R ≡ σ0
σ1
µ+ (1− σ0

σ1
)µH . (3.33)

5. Tµµ : the value of q̃µ at µ̂ = µ, namely,

Tµµ ≡ (
1

σ0
− 1

σ1
)2(µ− µH)2 . (3.34)
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The CDF of q̃µ is

F (q̃µ) =



Φ(−µ−µH
σ ) + θ(µ− µ̂R)[Φ(σ0σ (

√
q̃µ + µH−µ

σ1
))

−Φ(σ0σ (−
√
q̃µ + µH−µ

σ1
))] , q̃µ ≤ Tµµ

Φ(σ0σ (
√
q̃µ + µH−µ

σ1
)) , Tµµ < q̃µ ≤ T 0+

µ

Φ(µHσ −
σ0(q̃µ−T 0+

µ )

2σ(
−µH
σ0

+
µH−µ
σ1

)
) , T 0+

µ < q̃µ ≤ T ∗µ

Φ(− µ̂−(q̃µ)−µH
σ ) , T ∗µ < q̃µ and q̃µ ≤ TLµ if σ0 > σ′0

1 , q̃µ > TLµ if σ0 > σ′0
(3.35)

where θ(x) is the step function; and µ̂−(x) is defined as

µ̂−(x) ≡ µH −
(µH−µσ0σ1

− µH
σ′0σ
′
1
) +

√
(µH−µσ0σ1

− µH
σ′0σ
′
1
)2 − ( 1

σ2
0
− 1

σ′20
)[(µH−µσ1

)2 − (µH
σ′1

)2 − x]

1
σ2
0
− 1

σ′20

.

(3.36)
For the special case of µH = µ, we have σ0 = σ. The CDF is

F (q̃µ|µH = µ) =


Φ(
√
q̃µ) , q̃µ ≤ T 0+

µ

Φ( σ
2µH

q̃µ + µH
2σ ) , T 0+

µ < q̃µ ≤ T ∗µ
Φ(− µ̂−(q̃µ)−µH

σ ) , T ∗µ < q̃µ and q̃µ ≤ TLµ if σ0 > σ′0
1 , q̃µ > TLµ if σ0 > σ′0

(3.37)

where µ̂−(x) is simplified to be

µ̂−(x) = µH −
− µH
σ′0σ
′
1

+
√

( µH
σ′0σ
′
1
)2 − ( 1

σ2
0
− 1

σ′20
)[−(µH

σ′1
)2 − x]

1
σ2
0
− 1

σ′20

. (3.38)

For the special case of µH = 0 < µ, we have σ′0 = σ. The CDF is

F (q̃µ|µH = 0) =



Φ(−µ
σ ) + θ(µ− µ̂R)[Φ(σ0σ (

√
q̃µ + −µ

σ1
))

−Φ(σ0σ (−
√
q̃µ + −µ

σ1
))] , q̃µ ≤ Tµµ

Φ(σ0σ (
√
q̃µ + −µ

σ1
)) , Tµµ < q̃µ ≤ µ2

σ2
1

Φ(− µ̂−(q̃µ)
σ ) , µ2

σ2
1
< q̃µ and q̃µ ≤ TLµ if σ0 > σ′0

1 , q̃µ > q̃Lµ if σ0 > σ′0
(3.39)

where µ̂−(x) is simplified to be

µ̂−(x) = −
−µ
σ0σ1

+
√

( µ
σ0σ1

)2 − ( 1
σ2
0
− 1

σ′20
)[( µσ1 )2 − x]

1
σ2
0
− 1

σ′20

. (3.40)

4 Performance comparison

In this section, we use three examples with different sample sizes to investigate the perfor-
mance of the new formulae for q̃µ. All test statistics are compared in Appendix B. These
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Table 2. Summary of the yields expected in the mass region 123 < m(γγ) < 127 GeV in three
examples.

Yield signal background
Ex. 1 0.91 0.64
Ex. 2 0.91 2.79
Ex. 3 0.91 9.40

Table 3. Summary of systematic uncertainties in the examples.

Uncertainty Luminosity Higgs mass Spurious signal
Ex. 1 ±2% ±0.2 GeV ±0.5

Ex. 2 ±2% ±0.2 GeV ±1.0

Ex. 3 ±2% ±0.2 GeV ±3.0

examples originate from searching for Higgs boson using the γγ final state. They are denoted
by Ex. 1, Ex. 2 and Ex. 3 with increasing sample size, respectively. Table 2 summarizes
the expected signal and background yields in the mass region 123 < m(γγ) < 127 GeV.
The signal shape is simulated by a Gaussian distribution while the background shape is
simulated by an exponential distribution. They are shown in Fig. 2.
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Figure 2. The distribution of m(γγ) in the three examples. From left to right, it is Ex. 1, Ex. 2
and Ex. 3.

We further consider three systematic uncertainties. They are due to the luminosity
measurement, our knowledge on Higgs mass and the spurious signal, the last of which
directly affects the expected signal yield and is usually dominant in real analyses. The
uncertainty sizes are summarized in Table 3.

The CLs [6, 7] curves obtained from the asymptotic formulae in Ref. [1], this work and
the toy MC method are shown in Fig. 3 without including any systematic uncertainty and in
Fig. 4 with all three systematic uncertainties considered. The upper limits are summarized
in Tab. 4. We can see that: 1) the predictions from the asymptotic formulae are better with
larger sample size; 2) the new asymptotic formulae predict upper limits closer to those from
toy MC method in all cases; 3) the distributions of q̃µ predicted from the new formulae are
also closer to those from the toy MC method in most of the cases. Some cases are shown
in Fig. 5 for Ex. 1, Fig. 6 for Ex. 2 and Fig. 7 for Ex. 3. In these plots, the distribution
of µ̂ and a finer description of its PDF are also shown. The PDF of µ̂ is elaborated in
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Table 4. Summary of the upper limits at 95 % confidence level from the asymptotic formulae and
the toy MC method. The percentages in the brackets indicate the difference with respective to the
toy MC result.

Sys. Unc.? Toy MC Ref. [1] This work ∆UL(new)/∆UL(old)
Ex. 1 3.39 3.16 (-6.9%) 3.25 (-4.1%) 0.59

No Ex. 2 5.16 4.95 (-3.9%) 5.00 (-2.9%) 0.74
Ex. 3 8.13 7.91(-2.7%) 7.96 (-2.2%) 0.81
Ex. 1 3.53 3.26 (-7.7%) 3.36 (-4.8%) 0.62

Yes Ex. 2 5.42 5.23 (-3.5%) 5.32 (-2.0%) 0.57
Ex. 3 9.86 9.64 (-2.2%) 9.72 (-1.4%) 0.64

Appendix C.
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Figure 3. The CLs curves from the asymptotic formulae in Ref. [1](red), the new asymptotic
formulae in this work (blue), and the toy MC method (green band) in the three examples. From
left to right, it is Ex. 1, Ex. 2 and Ex. 3. No systematic uncertainties are considered. The upper
limits at 95 % confidence level of the signal strength are shown in the legend. The percentages in
the brackets indicate the difference with respective to the toy MC results.
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Figure 4. The CLs curves from the asymptotic formulae in Ref. [1](red), the new asymptotic
formulae in this work (blue), and the toy MC method (green band) in the three examples. From left
to right, it is Ex. 1, Ex. 2 and Ex. 3. All three systematic uncertainties are considered. The upper
limits at 95 % confidence level of the signal strength are shown in the legend. The percentages in
the brackets indicate the difference with respective to the toy MC results.
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Figure 5. The probability distribution of µ̂ (L) and q̃µ (R) in Ex 1. From top to bottom, the test
signal strength is 1.5, 3.5 and 5.0. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed q̃µ. This is the case with all systematic uncertainties considered.

5 A clarification on the standard deviation of µ̂

We have known two methods to obtain the standard deviation of µ̂ in the PDF of the
test statistics. The standard way is to use the Fisher information matrix obtained from
the second derivatives of the logarithmic likelihood function. The alternative way is to use
Wald’s approximation based on asimov datasets. In Ref. [1], it has seen that both methods
give similar results and the latter is the recommendation as it gives a distribution closer to
the true sampling distribution in several cases. As stated in Sec. 3, we recommend to use
σ(d2L) as the standard deviation in µ̂’s distribution. If we do not use the recommendations,
Fig. 8 shows an example where we use σ(d2L) in the old formulae in the left plot while
σ(Wald) in the new formulae in the right plot. The disagreement for µH 6= µ compared to
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Figure 6. The probability distribution of µ̂ (L) and q̃µ (R) in Ex 2. From top to bottom, the
test signal strength is 2, 5 and 8. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed q̃µ. This is the case with all systematic uncertainties considered.

the toy MC result is significant.
The two methods are connected in Eq. 3.1 and Eq. 3.7. If the test value of signal

strength happens to be the true value, µ = µ′, an unbiased estimation for a large sample
gives µ̂ = µ′ and hence we have

σ(d2L) ≡ σ(ξ[µ̂,µ′]) = σ(ξ[µ̂,µ]) = σ(ξ[µ̂,µ]) . (5.1)

The alternative method based on Wald’s theorem leads to

σ(Wald) = σ(d2L) . (5.2)

If µ 6= µ′, the equality above is only good if the sample size is large enough according to
Wald’s theorem. Therefore, we would expect that their difference will decrease if the sample
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Figure 7. The probability distribution of µ̂ (L) and q̃µ (R) in Ex 3. From top to bottom, the
test signal strength is 5, 10 and 13. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed q̃µ. This is the case with all systematic uncertainties considered.

size increases. Table 5 summarizes the σs in some cases. Here we define δσ as the relative
difference, δσ ≡ |σ(Wald)−σ(d2L)|/σ(d2L). These examples confirm the conclusion above.
Furthermore, comparing the new CDF of q̃µ in Eq. 3.35 to that in Ref. [1] and keeping in
mind that σ0 ≈ σ(d2L) and σ1 ≡ σ(Wald), we can understand why it is recommended to use
σ(Wald) as the standard deviation of µ̂ in Ref. [1]. The authors in Ref. [1] conjecture that
σ(Wald) absorbs some subleading effects compared to σ(d2L). So our proposed extension
of Wald’s approximation explains this conjecture.

On the other hand, we probably only care about an upper limit at 95 % C.L. or a
similar level in reality. But if we are too conservative and want to determine an upper
limit at 99.99 % C.L., we have to find µ corresponding to CLs equal to 1 × 10−4. Taking
µ = 12 Ex. 2 as example (see Fig. 9), the toy MC method, new formulae and old formulae
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Figure 8. The probability distribution of q̃µ in Ex 2 for µH = 5. We use σ(d2L) in the old formulae
in the left plot while σ(Wald) in the new formulae in the right plot. The black dots and open circles
represent the toy MC results. The blue solid/dashed histograms represent the new asymptotic
formulae in this work while the red solid/dashed histograms represent the old asymptotic formulae
from Wald’s approximation. The blue arrow represents the observed q̃µ. This is the case with all
systematic uncertainties considered.

Table 5. Summary of different σs in the cases of including systematic uncertainties.

Ex. Case σ(d2L) σ(Wald) δσ σ0 σ1 σ′0 σ′1
1 µ = 3.5, µH = 0 0.995584 1.73129 73.8% 1.20817 σ(Wald) σ(d2L) -

µ = 3.5 = µH 2.17809 2.14136 1.7% σ(d2L) - 2.10577 1.58559
2 µ = 5, µH = 0 2.05339 2.67143 30.1% 2.17675 σ(Wald) σ(d2L) -

µ = 5 = µH 3.1291 3.13158 0.08% σ(d2L) - 3.1086 2.60244
3 µ = 10, µH = 0 4.46857 4.95359 10.9% 4.26207 σ(Wald) σ(d2L) -

µ = 10 = µH 5.60164 5.60216 0.01% σ(d2L) - 5.81383 5.17148

give CLs= (4.4± 0.5)× 10−4, 3.3× 10−4 and 2.4× 10−4, respectively. In this case, the big
signal-to-background ratio, µs/b >> 1, makes the prediction from Wald’s approximation
break down (the upper limit difference compared to the toy MC result is about 45 %). In
Eq. 3.16 and Eq. 3.17, we have seen that C0,1 (or σ(′)0,1 via Eq. 3.19) reduce to the simple
form in Wald’s approximation if (s/b)2 or higher-order terms are omitted. Therefore, based
on the analysis above, the difference among σ0, σ1 and σ(d2L) in the new formulae (or the
difference between σ(Wald) and σ(d2L) in the old formulae) can be attributed to limited
sample size and non-negligible signal-to-background ratio. But these effects are partially
considered in the new formulae. This is why the new formulae work better than the old
ones.

6 Summary

In summary, we have provided a set of new asymptotic formulae to describe the probability
distributions of the likelihood-ratio test statistics from a different perspective. They reduce
to the old formulae [1] in the limit of large sample. A few examples are presented with
different sample sizes. The new formulae are found to agree better with the toy MC simula-
tions. Let ∆UL(old/new) denote the difference between the upper limit from the new/old
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Figure 9. The probability distribution of µ̂ (L) and q̃µ (R) in Ex 2 with µ = 12 and all systematic
uncertainties considered. The black dots and open circles represent the toy MC results. The
blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed q̃µ.

formulae and that from the toy MC method. We find ∆UL(new) is 57-81% of ∆UL(old)

based on the examples. Besides, they have been used to explain a conjecture proposed in
Ref. [1].
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A Asymptotic formulae for the CDF of tµ, t̃µ, qµ, t0 and q0

In this appendix, we present the asymptotic formulae for the other 5 test statistics, tµ, t̃µ,
qµ, t0 and q0. According to the proposed asymptotic form of tµ in Eq. 3.10, the CDF of tµ
is

F (tµ) = Φ(
σ0
σ

(
µH − µ
σ1

+
√
tµ))− Φ(

σ0
σ

(
µH − µ
σ1

−
√
tµ)) . (A.1)

For the special case of µH = µ, the CDF is F (tµ|µH = µ) = 2Φ(
√
tµ) − 1, which is the

same as that in Ref. [1].
For t̃µ, the asymptotic form is

t̃µ =

{
tµ = ( µ̂−µHσ0

+ µH−µ
σ1

)2 , µ̂ ≥ 0

tµ − t0 = ( µ̂−µHσ0
+ µH−µ

σ1
)2 − ( µ̂−µH

σ′0
+ µH

σ′1
)2 , µ̂ < 0

(A.2)
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The CDF of t̃µ is

F (t̃µ) =



Φ(σ0σ (−µH−µ
σ1

+
√
t̃µ))− Φ(σ0σ (−µH−µ

σ1
−
√
t̃µ)) , t̃µ ≤ T 0+

µ

Φ(σ0σ (−µH−µ
σ1

+
√
t̃µ))− Φ(−µH

σ +
σ0(t̃µ−T 0+

µ )

2σ(
−µH
σ0

+
µH−µ
σ1

)
) , T 0+

µ < t̃µ ≤ T ∗µ

Φ(σ0σ (−µH−µ
σ1

+
√
t̃µ))− Φ(

µ̂−(t̃µ)−µH
σ ) , T ∗µ < t̃µ and t̃µ ≤ TLµ if σ0 > σ′0

Φ(σ0σ (−µH−µ
σ1

+
√
t̃µ)) , t̃µ > TLµ if σ0 > σ′0

.

(A.3)
For the special case of µH = µ, it becomes

F (t̃µ|µH = µ) =



2Φ(
√
t̃µ)− 1 , t̃µ ≤ T 0+

µ

Φ(
√
t̃µ)− Φ(− σ

2µH
t̃µ − µH

2σ ) , T 0+
µ < t̃µ ≤ T ∗µ

Φ(
√
t̃µ)− Φ(

µ̂−(t̃µ)−µH
σ ) , T ∗µ < t̃µ and t̃µ ≤ TLµ if σ0 > σ′0

Φ(
√
t̃µ) , t̃µ > TLµ if σ0 > σ′0

. (A.4)

For qµ, the asymptotic form is

qµ =

{
0 , µ̂ > µ

tµ = ( µ̂−µHσ0
+ µH−µ

σ1
)2 , µ̂ ≥ µ

(A.5)

The CDF of qµ is

F (qµ) =


Φ(−µ−µH

σ ) + θ(µ− µ̂R)[Φ(σ0σ (
√
qµ + µH−µ

σ1
))

−Φ(σ0σ (−√qµ + µH−µ
σ1

))] , qµ ≤ Tµµ
Φ(σ0σ (

√
qµ + µH−µ

σ1
)) , qµ > Tµµ

. (A.6)

For the special case of µH = µ, it is F (qµ|µH = µ) = Φ(
√
qµ), which is the same as that in

Ref. [1].
The asymptotic form of t0 as a function of µ̂ is just tµ with µ = 0. Its CDF is given in

Eq. A.1 with µ = 0.
The asymptotic form of q0 as a function of µ̂ is

q0 =

{
t0 = ( µ̂−µHσ0

+ µH
σ1

)2 , µ̂ ≥ 0

0 , µ̂ < 0
. (A.7)

The CDF of q0 is

F (q0) =

{
Φ(−µHσ ) + θ(σ1 − σ0)[Φ(σ0σ (

√
q0 − µH

σ1
))− Φ(σ0σ (−√q0 − µH

σ1
))] , q0 ≤ (σ0−σ1σ0σ1

)2µ2H
Φ(σ0σ (

√
q0 − µH

σ1
)) , q0 > (σ0−σ1σ0σ1

)2µ2H
.

(A.8)
For the special case of µH = 0, the CDF is

F (q0|µH = 0) = Φ(
√
q0) , (A.9)

which is exactly the same as that based on Wald’s approximation.

– 17 –



Table 6. Summary of the upper limits from the asymptotic formulae and the toy MC method.

tµ t̃µ qµ q̃µ

Toy MC 4.30 4.21 3.46 3.53
Ex. I This Work 4.13 4.10 3.37 3.36

Ref. [1] 4.13 4.00 3.37 3.25
Toy MC 6.32 6.46 5.52 5.42

Ex. II This Work 6.37 6.37 5.37 5.32
Ref. [1] 6.37 6.30 5.37 5.23
Toy MC 11.12 11.32 10.03 9.86

Ex. III This Work 11.28 11.28 9.72 9.72
Ref. [1] 11.28 11.22 9.72 9.64

B Comparison of different test statistics

In the section, the test statistics (tµ, qµ, t̃µ and q̃µ) are compared. Figure 10, 11 and
12 show the distributions of the test statistics in the three examples respectively. Table 6
summarizes upper limits in the three examples for the four test statistics proposed in Ref. [1]
as well as the predictions from the old and new asymptotic formulae. We have the following
observations.

• The old and new asymptotic formulae have almost the same predictions for tµ and
qµ. This is not surprising because they give exactly the same probability distribution
for the special case of µH = µ.

• The difference between the old and new formulae is only significant for t̃µ and q̃µ;
and the new formulae give closer results to those from the toy MC method. This is
mainly because the new formulae treats the part with µ̂ < 0 very differently.

• Let UL(t) denote the upper limit based on the test statistic t. We find that UL(qµ) ≈
UL(q̃µ) < UL(tµ) ≈ UL(t̃µ). This is not surprising because qµ and q̃µ do not consider
the data with µ̂ > µ as incompatible with a hypothesized value µ by definition. tµ
and t̃µ are suitable for setting a confidence interval as summarized in Tab. 1.

C A finer description of the PDF of µ̂

According to Wald’s theorem, µ̂ abides by a Gaussian distribution approximately. Here we
try to provide a finer description. The optimal value µ̂ is determined by ∂ lnL/∂µ = 0,
which leads to

Nbins∑
i=1

nisi
bi + µ̂si

− s = 0 . (C.1)
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Figure 10. The probability distribution of tµ (top left), t̃µ (top right), qµ (bottom left) and q̃µ
(bottom right) in Ex 1 for µH = 4. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed value of the test statistic. This is the case with all systematic
uncertainties considered.

If the data distribution ni is consistent with the hypothesis with a signal strength µH , then
µ̂ is µH . We can expand the equation around µ̂ = µH .

Nbins∑
i=1

nisi
bi + µHsi

(1− (µ̂− µH)si
bi + µHsi

)− s ≈ 0 (C.2)

→
Nbins∑
i=1

nisi
bi + µHsi

−
Nbins∑
i=1

s2i
bi + µHsi

(µ̂− µH)− s ≈ 0 (C.3)

→ µ̂− µH
σ2

+ s ≈
Nbins∑
i=1

nisi
bi + µHsi

, (C.4)

where ni ≈ bi +µHsi is used in the second term in the left-hand side (LHS) of Eq. C.3 and
σ is the same as defined in last section. Defining µ′ ≡ µ̂−µH

σ2 + s and n′i ≡
nisi

bi+µHsi
, we have

µ′ ≈
Nbins∑
i=1

n′i . (C.5)
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Figure 11. The probability distribution of tµ (top left), t̃µ (top right), qµ (bottom left) and q̃µ
(bottom right) in Ex 2 for µH = 6. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed value of the test statistic. This is the case with all systematic
uncertainties considered.

To obtain the PDF of µ′ (hence the PDF of µ̂) from the PDF of n′is, we resort to the
method of characteristic function [9]. Letting φX(k) denote the characteristic function for
the random variable X, we have

φn′i(k) =
∞∑
n=0

(bi + µHsi)
ni

ni!
e−(bi+µHsi)eikn

′
i (C.6)

=

∞∑
n=0

(bi + µHsi)
ni

ni!
e−(bi+µHsi)e

ik
nisi

bi+µHsi (C.7)

= e(bi+µHsi)(e
i

ksi
bi+µHsi −1) , (C.8)

and

φµ′(k) = ΠNbins
i=1 φn′i(k) (C.9)

= ΠNbins
i=1 e(bi+µHsi)(e

i
ksi

bi+µHsi −1) . (C.10)

– 20 –



0 5 10 15 20 25 30 35 40 45

=10.0)µ (µt

6−10

5−10

4−10

3−10

2−10

1−10

1
P

D
F

=0
H

µ
µ=

H
µ

=0 (Wald)
H

µ
=0 (This work)

H
µ

 (Wald)µ=
H

µ
 (This work)µ=

H
µ

0 5 10 15 20 25

=10.0)µ (µt
~

6−10

5−10

4−10

3−10

2−10

1−10

1

P
D

F

=0
H

µ
µ=

H
µ

=0 (Wald)
H

µ
=0 (This work)

H
µ

 (Wald)µ=
H

µ
 (This work)µ=

H
µ

0 5 10 15 20 25 30 35 40 45

=10.0)µ (µq

6−10

5−10

4−10

3−10

2−10

1−10

1

P
D

F

=0
H

µ
µ=

H
µ

=0 (Wald)
H

µ
=0 (This work)

H
µ

 (Wald)µ=
H

µ
 (This work)µ=

H
µ

0 5 10 15 20 25

=10.0)µ (µq~

6−10

5−10

4−10

3−10

2−10

1−10

1

P
D

F

=0
H

µ
µ=

H
µ

=0 (Wald)
H

µ
=0 (This work)

H
µ

 (Wald)µ=
H

µ
 (This work)µ=

H
µ

Figure 12. The probability distribution of tµ (top left), t̃µ (top right), qµ (bottom left) and q̃µ
(bottom right) in Ex 3 for µH = 10. The black dots and open circles represent the toy MC results.
The blue solid/dashed histograms represent the new asymptotic formulae in this work while the red
solid/dashed histograms represent the old asymptotic formulae from Wald’s approximation. The
blue arrow represents the observed value of the test statistic. This is the case with all systematic
uncertainties considered.

Let us apply some approximations to φµ′(k) to simplify the derivation.

lnφµ′(k) =

Nbins∑
i=1

(bi + µHsi)(e
i

ksi
bi+µHsi − 1) (C.11)

≈
Nbins∑
i=1

(bi + µHsi)(i
ksi

bi + µHsi
− 1

2

k2s2i
(bi + µHsi)2

− i

6

k3s3i
(bi + µHsi)3

) (C.12)

= iks− 1

2

k2

σ2
− i

6
c3k

3 . (C.13)

where c3 is defined as

c3 =

Nbins∑
i=1

s3i
(bi + µHsi)2

. (C.14)
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The PDF of µ′ is then

g(µ′) =
1

2π

∫ +∞

−∞
φµ′(k)e−ikµ

′
dk (C.15)

=
1

2π
e−

1
2
σ2(s−µ′)2

∫ +∞

−∞
e−

1
2
( k
σ
−iσ(s−µ′))2− i

6
c3k3dk . (C.16)

Here we can see that this is a Gaussian distribution if c3 and all higher-order terms are
ignored. Since k centers around iσ2(s− µ′) mostly, we have the following approximation

lnφµ′(k) ≈ iks− 1

2

k2

σ2
− i

6
c3k

2(iσ2(s− µ′)) . (C.17)

Clearly, the last term lead to the correction to the standard deviation. Hence the PDF of
µ̂ is

f(µ̂) =
1

σ2
g(µ′) (C.18)

=
1

2πσ2

∫ +∞

−∞
φµ′(k)e−ikµ

′
dk (C.19)

≈ 1

2πσ2

∫ +∞

−∞
e
ik(s−µ′)− 1

2
k2

σ20 dk (C.20)

=
A√

2πσ∗
e−

1
2
(
µ̂−µH
σ∗ )2 , (C.21)

where A is a constant normalization factor; σ∗ is a function of µ̂.

σ∗(µ̂) =

√
1 +

c3
3
σ2(µ̂− µH)σ . (C.22)

We can see the PDF of µ̂, f(µ̂), is approximately a Gaussian distribution with a µ̂-dependent
standard deviation. Basically, the probability distribution of µ̂ is narrower if µ̂ < µH
and fatter if µ̂ > µH . There is a truncation at which 1 + c3

3 σ
2(µ̂ − µH) = 0, namely,

µ̂ = µ̂∗ ≡ µH − 3
c3σ2 . This is consistent with the intuitive picture that µ̂ cannot be too

negative otherwise the expected number of events, bi+µsi, is negative and this is not allowed
in reality. The correction to the standard deviation is only reasonable if c36 σ

2(µ̂− µH) < 1

and definitely not valid if µ̂→ +∞. This point is obvious in Fig. 5, Fig. 6 and Fig. 7.
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