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What is Dark Matter?

timeline
everything that could
not be seen with
optical instruments:
planets, black holes,
neutron stars, white
dwarfs, cold gas
clouds…

19th century

start of the use of
X-rays, gamma rays,
infrared instruments,
improved precision of
instruments

1950s only non-baryonic
matter which is not
seen directly by tele-
scopes

1980s

NASA, ESA, and Johan Richard
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Where is Strongly Interacting Dark Matter?
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Today’s Dark Matter Model

Spin-independent contact interaction

p � M

DM DM

nucleon nucleon

no annihilation or very little at the
present epoch (χ̄χ 6→ NN )

Similar analysis done with a dark photon (mA′ = 15, 50 MeV).
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Bounds on Weakly Interacting Massive Particles
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Neutrino coherent scattering XENON1T (2018)

XENON1T (2019)

LUX (2016)PandaX-II (2017)

DEAP-3600 (2019)

CRESST (2019)
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there are also bounds on DM-electron scattering, SD-proton and SD-neutron scattering

PDG 2020
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Particle Detectors are Blind to Strongly Interacting Dark Matter

Scatters many times in the atmosphere and slows down

velocity ∼

√
kT
mχ

, kinetic energy ∼ 0.03 eV

Current nuclear detection thresholds: O(keV)
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Goodman &Witten
For values of Mχ . 100 GeV,
the stopping power of the atmo-
sphere becomes important, and
the χ particle probably could not
be detected at sea level. Their ki-
netic energy would be too low to
excite the detector […] (1985)



Strongly Interacting Dark Matter is Completely Ruled Out…
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…, but not if it is a Sub-Component!
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…, but not if it is a Sub-Component!
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Properties of a Sub-Component of Strongly Interacting DM

Should we care about strongly interacting dark matter?

Probably!

How can we detect it?

Too sparse (fχ ∼ 10−6, ρ ∼ 0.3
GeV/cm3, mχ ∼ 1 GeV)

Too slow (not energetic enough
to be detected)

⇒

accumulate in the Earth over its
lifetime

accelerate with nuclear accelerators
and thermal sources
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Thermal Population of Dark Matter in the Earth

dNDM

dt
=

ρDM

mDM
v⊕πR2

⊕ fcap −NDM floss

# of DM intercepted by Earth

fraction of DM captured by gravity

fcap =
2(ln[1− f̄KE])

1/2(
π ln[v2es/v2⊕]

)1/2
fraction of DM lost by Jeans escape

floss =
3

R⊕n̄DM

nLSSvLSS

2π1/2

(
1 +

v2es
v2LSS

)
exp
(
−v2es/v2LSS

)

evaporationgravity

ApJ 866 111 (2018), ApJ 321 560 & 571 (1987)
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Traffic Jam Population of Dark Matter in the Earth

infalling dark matter that has not yet
reached the equilibrium distribution

vz
dv
dz

∝ −nN σχn
v3N
v

PRD 101 055001 (2020)
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A Large Density Near the Earth Surface can be Obtained
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DM heavier than 10 GeV sinks,
lighter than 1 GeV evaporates
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Accelerating Thermalized Dark Matter with Beams and Heat

We need to give energy to the dark matter:

Beams
1. Particle accelerators (∼ 1 TeV)

2. Nuclear accelerators (∼ 1 MeV)

Heat
1. Light bulbs (∼ 3000 K ∼ 0.3 eV)
2. Tokamak (∼ 108 K ∼ 10 keV)
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Overview of Accelerating Techniques
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Playing Pool with Dark Matter
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αnucleus
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A Nuclear Recoil is Achievable with Nuclear Accelerators
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The Rate is Measurable in a 10cm Diameter Xenon Detector

Eth = 5 keV R ∼ nχ ×
(

Ib
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σχb
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The Incandescent Light Bulb Setup

Dark matter gas @ 300 K Argon gas @ 3000 K

P(E)dE =

√
E

πT3
exp
(
−E

T

)
dE

energy

probability

0.1 eV
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Energy Achievable by Up-Scattered Dark Matter

Dark matter gas @ 300 K Argon gas @ 3000 K Dark matter gas scattering

P(E)dE ∝ erf
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f1(Tχ,TN )

)
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− E

f2(Tχ,TN )

)
dE

energy

probability

0.1 eV
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Energy Achievable by Up-Scattered Dark Matter

Dark matter gas @ 300 K Argon gas @ 3000 K Dark matter gas scattering
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The Rate is Measurable in a 1g CO Detector

Eth = 0.8 eV R ∼ nχ
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Rates in a Detector for fχ = 1
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Rates in a Detector for fχ = 10−3
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Rates in a Detector for fχ = 10−6
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Shielding

Psh ∼ Psh, air × Psh, lead × . . .

proton dark matter

100 cm air

1 cm steel

1 cm lead
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To be improved

elements to improve effect on rate
in detector

shielding analysis ↓
collimation of the beam ↑
V and T of gas ↑
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er
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Summary

Strongly interacting dark matter:
� Could exist as a fraction of the total dark matter X
� Direct detection methods cannot probe sub-components ×
� Interacts with protons and neutrons X
� Overdense X
� Very slow ×

Accelerate it through up-scattering with nuclear accelerators (possible with current detector
thresholds) or thermal sources, such as light bulbs (possible in the near future…?)

dark matter

detector

proton
accelerator

millicharge dark matter:

PRD 103 115031 (2021)
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Appendix



15 MeV Dark Photon

need α′ ≤ 1 to maintain perturbative consistency
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50 MeV Dark Photon

need α′ ≤ 1 to maintain perturbative consistency
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Mean Free Path of Dark Matter in Materials

lFP = (nT σχp)
−1, saturates at the geometric cross-section 4π(1.2 fm A1/3)2
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(for a particle of mass 1 GeV (full) and 10 GeV (dashed) up-scattered by a 400 keV beam)
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