[2025-01-18] For better promotion of the events, the categories in this system will be adjusted. For details, please refer to the announcement of this system. The link is https://indico-tdli.sjtu.edu.cn/news/1-warm-reminder-on-adjusting-indico-tdli-categories-indico

24–26 Sept 2025
Tsung-Dao Lee Institute
Asia/Shanghai timezone

Interfacial magnetic spin Hall effect in van der Waals heterostructure

25 Sept 2025, 11:00
30m
Tsung-Dao Lee Institute/N1F-N102 - Smart Classroom (Tsung-Dao Lee Institute)

Tsung-Dao Lee Institute/N1F-N102 - Smart Classroom

Tsung-Dao Lee Institute

70

Speaker

Ms Yudi Dai (Nanjing University)

Description

The spin Hall effect (SHE) allows efficient generation of spin polarization or spin current through charge current and plays a crucial role in the development of spintronics. While SHE typically occurs in non-magnetic materials and is time-reversal even, exploring time-reversal-odd (T-odd) SHE, which couples SHE to magnetization in ferromagnetic materials, offers a new charge-spin conversion mechanism with new functionalities. Here, we report the observation of giant T-odd SHE in van der Waals ferromagnetic heterostructure, representing a previously unidentified interfacial magnetic spin Hall effect (interfacial-MSHE). Through rigorous symmetry analysis and theoretical calculations, we attribute the interfacial-MSHE to a symmetry-breaking induced spin current dipole at the vdW interface. Furthermore, we show that this linear effect can be used for implementing multiply-accumulate operations and binary convolutional neural networks with cascaded multi-terminal devices. Our findings uncover an interfacial T-odd charge-spin conversion mechanism with promising potential for energy-efficient in-memory computing.

Session Selection Condensed Matter

Presentation materials

There are no materials yet.