Processing math: 0%

[2025-01-18] For better promotion of the events, the categories in this system will be adjusted. For details, please refer to the announcement of this system. The link is https://indico-tdli.sjtu.edu.cn/news/1-warm-reminder-on-adjusting-indico-tdli-categories-indico

11–15 Dec 2023
Tsung-Dao Lee Institute
Asia/Shanghai timezone

Polarimetry of GRB prompt emission with POLAR and POLAR-2

14 Dec 2023, 14:05
20m
Hall # 9

Hall # 9

Contributed talk in mini symposium High-E Missions...

Speaker

Hancheng Li (Department of Astronomy, University of Geneva)

Description

Gamma-Ray Burst (GRB) prompt polarization has been measured in more than thirty cases. However, as they suffered from large systematical/statistical uncertainties, they showed a wide range distribution of polarization degrees (PDs). The theoretical community has recently paid more attention to the POLAR mission, which reported PDs of 14 GRBs at mostly a level of \sim10% and a hint of polarization angle (PA) evolution over time. If the prompt gamma-rays are produced by photospheric emission, multiple scattering will significantly reduce the PD; synchrotron radiation would also allow a low PD if the magnetic field is dissipated. In another non-uniform jet scenario, if stochastic variations (patchy shells or mini-jets at scales \ll1/\Gamma) indeed endure with intrinsically independent magnetic field orientation and evolution, the integrated PD would be suppressed and PA evolution would occur. More realistic theoretical models of both time-/energy-dependent polarization based on advanced numerical simulations are needed to better interpret the results. Meanwhile, the next-generation polarimeter POLAR-2 is required to improve the measurement accuracy. POLAR-2 will be launched in 2025 to the China Space Station and consists of three detectors: a High-energy polarization Detector, a Low-energy polarization Detector and a Broad-band Spectroscopy Detector, sharing most of their mission time to monitor jointly the sky with overlapped fields of view. The synergies of the three detectors will allow POLAR-2 to significantly improve the accuracy (\sim10 times better) of GRB polarimetry, and shed new light on the jet physics of GRBs.

Primary author

Hancheng Li (Department of Astronomy, University of Geneva)

Co-authors

Presentation materials